Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. №10
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2021.10.6
UDC: 551.46
THE ANNUAL CYCLE OF THE ERROR OF RADIOALTIMETRIC
MEASUREMENTS OF THE BLACK SEA LEVEL
DUE TO THE NONLINEARITY OF SEA WAVES
A. S. Zapevalov
Marine Hydrophysical Institute of RAS
299011, Sevastopol, str. Kapitanskaya 2
The paper was received October 5, 2021
Abstract. The variability of the error of the altimetric determination of the Black Sea level DL due to the nonlinearity of sea waves is analyzed. The nonlinearity leads to deviations in the distribution of elevations of the reflecting radio wave surface from the Gaussian distribution. The error occurs due to the fact that the median of the non-Gaussian distribution of surface elevations does not coincide with the average surface level. The analysis is carried out within the framework of the Brown model, which describes the shape of an altimetric pulse reflected from the sea surface. Data from a numerical operational model of the surface wave field are used for the analysis. When calculating the shape of the reflected pulse of the altimeter, an additional predictor is introduced – the steepness of the waves. It is shown that there is a clearly defined annual variation of the error DL. Its highest values are observed in winter, when the average monthly value reaches the level of 0.25 m, in summer this error decreases to 0.08-01 m. The maximum value calculated from the three-hour characteristics of surface waves is 0.4 m, the average value is 0.17 m.
Key words: altimetry, Brown model, surface waves, distribution of surface elevation.
1. Pustovojtenko V.V., Radajkina L.N., Terekhin Yu.V., Korotaev G.K. Space means of radar monitoring of marine areas. Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa. [Ecological Safety of Coastal and Shelf Zones of Sea]. 2008. №16. P.45-83. (In Russian)
2. Pustovoitenko V.V., Bolshakov A.N. Short-wave radiolocation in oceanography. Physical Oceanography. 1994. V.5. P.309-317. https://doi.org/10.1007/BF02197022
3. Danilychev M.V., Nikolaev A.N., Kutuza B.G. Application of the kirchhoff method for practical calculations in microwave radiometry of wavy sea surface. Journal of Communications Technology and Electronics. 2009. V.54. №8. P.869-878.
4. Zapevalov A.S., Garmashov A.V. Skewness and kurtosis of the surface wave in the coastal zone of the Black Sea. Physical Oceanography. 2021. V.28. №4. P.414-425. https://doi.org/10.22449/1573-160X-2021-4-414-425
5. Ablain M., Legeais J.F., Prandi P., Marcos M., Fenoglio-Marc L., Dieng H.B., Benveniste J., Cazenave A. Satellite altimetry-based sea level at global and regional scales. Surveys in Geophysics. 2017. V.38. P.7-31. https://doi.org/10.1007/s10712-016-9389-8
6. Lebedev S.A., Gusev I.V. International experience in calibration of satellite altimetry data on the stationary and temporary calibration sites. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space]. 2021. V.18. №2. P.18-35. https://doi.org/10.21046/2070-7401-2021-18-2-18-35
7. Cheng Y., Xu Q., Gao L., Li X., Zou B., Liu T. Sea state bias variability in satellite altimetry data. Remote Sensing. 2019. V.11. №10. P.1176. https://doi.org/10.3390/rs11101176
8. Badulin S.I., Grigorieva V.G., Shabanov P.A., Sharmar V.D., Karpov I.O. Sea state bias in altimetry measurements within the theory of similarity for wind-driven seas. Advances in Space Research. 2021. V.68. №2. P.978-988. https://doi.org/10.1016/j.asr.2019.11.040
9. Pires N., Fernandes M., Gommenginger C., Scharroo R. A conceptually simple modeling approach for Jason-1 sea state bias correction based on 3 parameters exclusively derived from altimetric information. Remote Sensing. 2016. V.8. №7. P.576. https://doi.org/10.3390/rs8070576
10. Zapevalov A.S. Effect of skewness and kurtosis of sea-surface elevations on the accuracy of altimetry surface level measurements. Izvestiya, Atmospheric and Oceanic Physics. 2012. V.48. №2. P.200-206. https://doi.org/10.1134/S0001433812020120
11. Tran N., Vandemark D., Labroue S., Feng H., Chapron B., Tolman H.L., Lambin J., Picot N. Sea state bias in altimeter sea level estimates determined by combining wave model and satellite data. Journal of. Geophysical Research. 2010. V.115. №C3. P.C03020. https://doi.org/10.1029/2009jc005534
12. Ardhuin F., et al. Semi empirical dissipation source functions for wind-wave models. Part I: definition and calibration and validation at global scales. Journal of Physical Oceanography. 2010. V.40. P.1917-1941. https://doi.org/10.1175/2010JPO4324.1
13. Bass F.G., Fuks I.M. Wave scattering by statistically rough surface. Pergamon. 1979. 540 p.
14. Brown G.S. The average impulse response of a rough surface and its applications. IEEE Transactions on Antennas and Propagation. 1977. V.25. №1. P.67-74. https://doi.org/10.1109/TAP.1977.1141536
15. Hayne G.S. Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IEEE Transactions on Antennas and Propagation. 1980. V.28. №5. P.687-692. https://doi.org/10.1109/TAP.1980.1142398
16. Quilfen Y., Chapron B., Collard F., Serre M. Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters. Marine Geodesy. 2004. V.27. №3-4. P.535-549. https://doi.org/10.1080/01490410490902025
17. Karaev V.Yu., Meshkov E.M., Cotton D., Chu X. On the problem about determination of the sea wave period based on radio altimeter data. Radiophysics and Quantum Electronics. 2013. V.56. №3. С.123-134. https://doi.org/10.1007/s11141-013-9421-5
18. Phillips О.М. On the dynamics of unsteady gravity waves of finite amplitude. Part 2. Journal of Fluid Mechanics. 1961. V.11. P.143-155. https://doi.org/10.1017/S0022112061000913
19. Longuet-Higgins M.S. The effect of non-linearities on statistical distribution in the theory of sea waves. Journal of Fluid Mechanics. 1963. V.17. №3. P.459-480. https://doi.org/10.1017/S0022112063001452
20. Huang N.Е., Long S.R. An experimental investigation of the surface elevation probability distribution and statistics of wind-generated waves. Journal of Fluid Mechanics. 1980. V.101. №1. P.179-200. https://doi.org/10.1017/s0022112080001590
21. Mihajlichenko S.Yu., Garmashov A.V., Fomin V.V. Verification of the SWAN wind wave model based on observations on the stationary oceanographic platform of the Black Sea Hydrophysical Polygon of the RAS. Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon morya [Ecological Safety of Coastal and Shelf Zones of Sea]. 2016. V.2. P.52-57. (In Russian)
22. Ratner Yu. B., Fomin V. V., Ivanchik A.M., Ivanchik M. V. System of the wind wave operational forecast in the Black Sea marine forecast center. Physical Oceanography. 2017. №5. P.51-59. https://doi.org/10.22449/1573-160X-2017-5-51-59
23. Tayfun M.A., Alkhalidi M.A. Distribution of surface elevations in nonlinear seas. Offshore Technology Conference Asia. 2016. OTC-26436-MS. https://doi.org/10.4043/26436-MS
24. Gao Z., Sun Z., Liang S. Probability density function for wave elevation based on Gaussian mixture models. Ocean Engineering. 2020. V.213. P.107815. https://doi.org/10.1016/j.oceaneng.2020.107815
For citation:
Zapevalov A.S. The annual cycle of the error of radioaltimetric measurements of the Black Sea level due to the nonlinearity of sea waves. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №10. https://doi.org/10.30898/1684-1719.2021.10.6 (In Russian)