Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. №10
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2021.10.8
UDC: 537.633.9
OF FERRITE-PIEZOELECTRIC COMPOSITE MATERIALS
Yu. A. Lupitskaya, E. M. Filonenko, P. E. Romazev
Chelyabinsk State University
454001, Br. Kashirinykh 129, Chelyabinsk, Russia
The paper was received October 19, 2021.
Abstract. Ceramic composite materials based on compounds of lead zirconate-titanate and cobalt ferrite with different content of the initial components mass fraction have been synthesized. Using a complex of physicochemical methods, the microstructure and magnetodielectric properties of the synthesized ceramics have been studied. The resulting frequency dependences of the magneto-dielectric coefficient for the composite system (1-x)PZT + xCF(0.0 ≤ x ≤ 0.5) in an external magnetic field have a resonance form in the entire concentration range investigated. The largest changes in the value of the complex permittivity are observed for the sample with the composition of 0.6PZT + 0.4CF.
Key words: heterogeneous multiferroics, composites, lead zirconate-titanate, cobalt ferrite, dielectric and magnetic properties.
1. Burdin D.A., Chashin D.V., Ekonomov N.A., Fetisov Y.K., Stashkevich A.A. Highsensitivity DC field magnetometer using nonlinear resonance magnetoelectric effect. Journal of Magnetism and Magnetic Materials. 2016. V.405. P.244-248. http://doi.org/10.1016/j.jmmm.2015.12.079
2. Filippov D.A., Laletin V.M., Firsova T.O. Nonlinear Magnetoelectric Effect in Composite Multiferroics. Physics of the Solid State. 2014. V.56. №5. P.980-984. http://doi.org/10.1134/S1063783414050096
3. Filippov D.A., Galichyan T.A., Laletin V.M. Influence of an interlayer bonding on the magnetoelectric effect in the layered magnetostrictivepiezoelectric structure. Applied Physics A. 2014. V.116. P.2167-2171. http://doi.org/10.1007/s00339-014-8430-3
4. Chupis I.E. Progress in studying ferroelectromagnetic crystals. Low Temperature Physics. 2010. V.36. №6. P.477. http://doi.org/10.1063/1.3462535
5. Noheda B., Cox D.E., Shirane G. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Physical Review B. 2000. №63. P.014103-0141112. http://dx.doi.org/10.1103/PhysRevB.63.014103
6. Bayrakdar H., Yalcın O., Vural S., Esmer K. Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. Journal of Magnetism and Magnetic Materials. 2013. №343. P.86-91. http://dx.doi.org/10.1016/j.jmmm.2013.04.079
7. Fedii А.А., Kalganov D.A., Filonenko E.M., Yaroshenko F.A., Bezborodova P.A., Lupitskaya Yu.A. Structure and Magnetodielectric Properties of Composite Ceramics Based on Lead Ferroniobate. Physics of the Solid State. 2021. V.63. №11. P.1774-1779. https://doi.org/10.21883/FTT.2021.11.51575.14s
8. Kania A., Talik E., Kruczek M. X-Ray photoelectron spectroscopy, magnetic and dielectric studies of PbFe1/2Nb1/2O3. Ferroelectrics. 2009. V.391. P.114-121. http://doi.org/10.1080/00150190903001805
9. Muthurani S., Balaji M., Gautam S., Chae K.H., Song J.-H., Padiyan D.P., Asokan K. Magnetic and Humidity-Sensing Properties of Nanostructured CuxCo1-xFe2O4 Synthesized via Autocombustion. Journal of Nanoscience and Nanotechnology. 2011. V.11. P.5850-5855. http://doi.org/10.1166/jnn.2011.4455
10. Bush A.A., Sirotinkin V.P. Dielectric properties of Sr3CuNb2O9 perovskite ceramics. Inorganic Materials. 2008. V.44. №11. P.1233-1239. http://doi.org/10.1134/S0020168508110174
For citation:
Lupitskaya Yu.A., Filonenko E.M., Romazev P.E. Magnetodielectric properties of ferrite-piezoelectric composite materials. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №10. https://doi.org/10.30898/1684-1719.2021.10.8 (In Russian)