Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №10
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2022.10.5
ELECTRICAL PROPERTIES AND GEOELECTRIC SECTION OF SOME SEDIMENTARY ROCKS OF THE BAIKAL NATURAL TERRITORY ACCORDING TO RADIO IMPEDANCE SOUNDING DATA
Yu.B. Bashkuev, V.B. Khaptanov, M.G. Dembelov, L.Kh. Angarkhaeva, D.G. Buyanova
Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences
670047, Russia, Ulan-Ude, Sakhyanovoy 6
The paper was received September 16, 2022
Abstract. The specific electrical resistance (electrical conductivity) of some layered sedimentary rocks of the Baikal natural territory was measured by the method of radio impedance sounding in the VLF-LF ranges of electromagnetic waves. Their geoelectric sections are determined. Information about the geoelectrical section (GES) of sedimentary rocks of the Baikal natural territory can be used in engineering and geological surveys of the Siberia-Mongolia-China gas pipeline route, as well as in the analysis of the physico-chemical causes of the appearance of corrosion processes on long pipeline structures of the continental regions of Eurasia. The technique of radio impedance sounding can be applied to measure the electrical properties of various soils of a given territory within a layered model of a medium with a poorly and well conductive base.
Key words: radio impedance sounding, geoelectric section, Baikal natural territory, sedimentary rocks.
Financing: This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2020-787 for the implementation of a large scientific project “Fundamental Base, Methods and Technologies for Digital Monitoring and Forecasting the Ecological Situation of the Baikal Natural Territory”).
Corresponding author: Bashkuev Yuri Buddich, buddich@mail.ru
References
1. Tsydypov Ch.T., Tsydenov V.D., Bashkuev Yu.B. Issledovanie elektricheskikh svoistv podstilayushchei sredy [Investigation of electric properties of the underlying medium]. Novosibirsk, Nauka Publ. 1979. 176 p. (in Russian)
2. Dorzhiev V.S., Advokatov V.R., Bodiev B.B. Geoelektricheskie razrezy yuga Sibiri i Mongolii [Geoelectric sections of Southern Siberia and Mongolia]. Moscow, Nauka Publ. 1987. 94 p. (in Russian)
3. Bashkuev Yu.B. Elektricheskie svoistva prirodnykh sloistykh sred [Electrical properties of natural stratified media]. Novosibirsk, Publ. House SB RAS. 1996. 207 p. (in Russian)
4. Afraimovich E.L., Zherebtsov G.A., Perevalova N.P., Sankov VA., Bashkuev Yu.B., Kurkin VI., Kovalenko VA., Rakhmatulin R.A., Mikhalev A.V., Berngardt O.I. et al. Seismoionosfernye i seismoelektromagnitnye protsessy v Baikal'skoi riftovoi zone [Seismoionospheric and seismoelectromagnetic processes in the Baikal rift zone]. Novosibirsk, Publ. House SB RAS. 2012. 304 p. (in Russian)
5. Melchinov V.P., Bashkuev Yu.B., Angarkhaeva L.Kh., Buyanova D.G. Elektricheskie svoistva kriolitozony vostoka Rossii v radiodiapazone [Electrical properties of the permafrost of the East part of Russia in the radio range]. Ulan-Ude, Buryat Scientific Centre SB RAS Publ. 2006. 257 p. (in Russian)
6. Efremov V.N. Radioimpedansnoe zondirovanie merzlykh gruntov [Radioimpedance sounding of frozen soils]. Yakutsk, Melnikov Permafrost Institute SB RAS Publ. 2013. 204 p. (in Russian)
7. Bashkuev Yu.B., Khaptanov V.B., Dembelov M.G. Integration of the GPR and radio-impedance techniques in studies of the Baikal rift zone. Geodinamika i tektonofizika [Geodynamics & Tectonophysics]. 2019. V.10. №3. P.603-620. https://doi.org/10.5800/GT-2019-10-3-0429 (in Russian)
8. Bashkuev Yu.B., Advokatov V.R., Khaptanov V.B., Buyanova D.G., Angarkhaeva L.Kh. Electromagnetic characteristics of the water area of Lake Baikal. Geologiya i geofizika [Russian Geology and Geophysics]. 1993. V.34. №9. P.118-126. (in Russian)
9. Bashkuev Yu.B., Khaptanov V.B., Buyanova D.G., Angarkhaeva L.Kh., Dembelov M.G. Geoelectric characteristics of the coastal area of the lake Baikal middle part according to VLF-LF radioimpedance sounding. Zhurnal radioelectroniki [Journal of Radio Electronics]. 2017. №5. http://jre.cplire.ru/jre/may17/10/text.pdf (In Russian)
10. Bashkuev Yu.B., Khaptanov V.B., Dembelov M.G., Angarkhaeva L.Kh, Boloev V.P. and Hayakawa M. Radioprobing of underground structure of the Failure Gulf, formed as a result of the M7.5 Tsagan earthquake. Physics and Chemistry of the Earth. 2006. V.31. № 4-9. P.210-214. http://dx.doi.org/10.1016/j.pce.2006.02.030
11. Tulokhonov A.K., Garmaev E.Zh., Bashkuev Yu.B., Lomukhin Yu.L., Khaptanov V.B., Dembelov M.G., Slipenchuk M.V., Dorzhiev B.Ch., Ochirov O.N. Radiophysical monitoring of the Lake Baikal ice cover. Geography and Natural Resources. 2018. V.39. №1. P.39-45. http://dx.doi.org/10.1134/S1875372818010067
12. Naguslaeva I.B., Bashkuev Yu.B., Dembelov M.G. Seasonal and spatial variations of diurnal variations of the VLF pulsed flux of the natural electromagnetic field recorded in middle latitudes. Geomagnetism and aeronomy. 2016. V.56. №3. Р.355-360. https://doi.org/10.1134/S0016793216030142
13. Computer program RF No. 2002610893. Angarkhaeva L.Kh. Paket programm «Impedans» dlya resheniya zadach radioimpedansnogo zondirovaniya [Software package "Impedance" for solving problems of radio impedance sounding]. The applicant and patent holder: Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences. Applied 11.04.2002. Registered 06.06.2002. (In Russian)
14. Veshev A.V., Egorov V.A. Method for determining the effective complex permittivity of rocks using electromagnetic fields of radio stations. Elektrosvyaz' [Telecommunications]. 1968. №7. P.56-62. (In Russian)
15. Veshev A.V., Ivochkin V.G., Yakovlev A.V., Alekseev E.P. Airborne electroprospecting REMP equipment and the results of its field tests. Geofizicheskaya apparatura: sbornik nauchnykh statei [Geophysical equipment: collection of scientific articles]. Leningrad, Nedra. 1981. Issue 73. P.77–87.
16. Tezkan B., Saraev A. A new broadband radiomagnetotelluric instrument: applications to near surface investigations. Near Surface Geophysics. 2008. V.6. №4. P.245-252. https://doi.org/10.3997/1873-0604.2008019
17. Saraev A., Simakov A., Shlykov A., Tezkan B. Controlled source radiomagnetotellurics: A tool for near surface investigations in remote regions. Journal of Applied Geophysics. 2017. V.146. P.228-237. https://doi.org/10.1016/j.jappgeo.2017.09.017
18. Tezkan B., Muttaqien I., Saraev A. Mapping of buried faults using the 2D modelling of far-field controlled source radiomagnetotelluric data. Pure and Applied Geophysics. 2019. V.176. №2. P.751-766. https://doi.org/10.1007/s00024-018-1980-0
19. Shlykov A., Saraev A., Tezkan B. Study of a permafrost area in the Northern part of Siberia using controlled source radiomagnetotellurics. Pure and Applied Geophysics. 2020. V.177. №12. P.5845-5859. https://doi.org/10.1007/s00024-020-02621-x
20. Saraev A.K., Shlykov A.A., Tezkan B. Application of the controlled source radiomagnetotellurics (CSRMT) in the study of rocks overlying kimberlite pipes in Yakutia/Siberia. Geosciences. 2022. V.12. №1. P.34. https://doi.org/10.3390/geosciences12010034
21. Saraev A.K., Antashchuk K.M., Eremin I.S. Audio-frequency magnetotelluric surveys with non-grounded lines for imaging the resistivity structure of the Rybachy Peninsulsa (Murmansk region). Kriosfera Zemli [Earth’s cryosphere]. 2018. V.22. №5. P.65-76. https://doi.org/10.21782/KZ1560-7496-2018-5(65-76) (In Russian)
22. Shlykov A., Saraev A., Agrahari S. Studying vertical anisotropy of a horizontally layered section using the controlled source radiomagnetotellurics: an example from the North-Western region of Russia. Geophysica. 2019. V.54. №2. P. 3-21.
For citation:
Bashkuev Yu.B., Khaptanov V.B., Dembelov M.G., Angarkhaeva L.Kh., Buyanova D.G. Electrical properties and geoelectric section of some sedimentary rocks of the Baikal natural territory according to radio impedance sounding data. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №10. https://doi.org/10.30898/1684-1719.2022.10.5 (In Russian)