

DOI: https://doi.org/10.30898/1684-1719.2022.10.6

УДК: 621.391.01

АЛГОРИТМ ОПТИМАЛЬНОГО ПОСИМВОЛЬНОГО ПРИЕМА ЧАСТОТНО-ЭФФЕКТИВНЫХ СИГНАЛОВ С КОРРЕКТИРУЮЩИМИ КОДАМИ В НЕДВОИЧНЫХ ПОЛЯХ ГАЛУА

Л.Е. Назаров

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, 141190, Московская обл., Фрязино, пл. Введенского, 1

Статья поступила в редакцию 16 сентября 2022 г.

Аннотация. Приведено описание разработанного алгоритма оптимального сигнальных конструкций на посимвольного приема основе частотноэффективных сигналов с двумерными «созвездиями», интенсивно используемых в приложениях, и блоковых корректирующих кодов в недвоичных полях Галуа, формируемых по модулю неприводимого многочлена. Показано, посимвольный прием минимизирует вероятность ошибки на кодовый символ или на информационный бит в отличие от известного правила максимального правдоподобия, минимизирующего вероятность ошибки на кодовое слово. Доказано, что основу алгоритма посимвольного приема составляет спектральное преобразование в базисе Уолша-Адамара и результирующая сложность алгоритма определяется размерностью дуального кода, что обусловливает перспективность его применения для блоковых корректирующих кодов с кодовой скоростью (с низкой избыточностью). Исследование высокой вероятностных характеристик (вероятность ошибочного приема информационный бит) рассматриваемого алгоритма посимвольного приема произведено путем его моделирования для сигнальных конструкций на основе сигналов с многоуровневой фазовой манипуляцией (ФМ-16-сигналы) и сигналы с квадратурной амплитудной манипуляцией (КАМ-16-сигналы) и простого корректирующего кода с общей проверкой на четность в поле объемом 16.

Показано, что применение алгоритма посимвольного приема обеспечивает энергетический выигрыш для вероятности ошибки на бит 0.00001 до 1.25...1.5 по отношению к рассматриваемым сигналам без кодирования. При уменьшении вероятности ошибки на бит значения энергетических выигрышей увеличиваются.

Ключевые слова: корректирующие коды, сигнальные конструкции, посимвольный прием, частотно-эффективные сигналы

Финансирование: Работа выполнена при финансовой поддержке РФФИ (проект №20-07-00525

Автор для переписки: Назаров Лев Евгеньевич, levnaz2018@mail.ru

Введение

Корректирующие коды (коды, исправляющие ошибки) используются для повышения надежности передачи информации по физическим проводным и беспроводным каналам с помехами [1-3]. Эти коды используются в сочетании с цифровыми сигналами с различными видами «созвездий» при формировании сигнальных конструкций [3-5].

Одно из основных требований, предъявляемых к корректирующим кодам, заключается в приемлемой сложности технической реализации алгоритмов формирования и приема рекомендуемых сигнальных конструкций [1,4]. Другое важное требование определяется достижением вероятностных характеристик при приеме данных сигнальных конструкций, близких к предельным вероятностным характеристикам Шенноновской пропускной способности используемых каналов с помехами [4]. Выполнение этого требования основывается на применении алгоритмов оптимального приема сигнальных конструкций [3].

Известны два общих класса алгоритмов оптимального приема сигнальных конструкций, формируемых на основе корректирующих кодов: алгоритмы, реализующие правило максимального правдоподобия с минимизацией вероятности ошибки кодовых слов, и алгоритмы, реализующие посимвольный

прием с минимизацией вероятности ошибки на кодовый символ или на информационный бит P_6 [1,3-6].

Развитие теории посимвольного приема представляет самостоятельное научное направление [4,6]. Алгоритмы посимвольного приема являются основой вычислительных процедур, реализующих итеративную обработку при приеме сигнальных конструкций на основе корректирующих кодов, наиболее эффективных относительно сформулированных требований (на основе блоковых и сверточных турбо-кодов, низкоплотностных кодов) [4].

Известен ряд алгоритмов посимвольного приема сигнальных конструкций, формируемых на основе линейных корректирующих кодов в двоичных полях Галуа GF(2), например, на основе решетчатой структуры порождающих матриц кодов, на основе спектрального преобразования в базисе Уолша-Адамара [4,6].

Актуальной является проблема разработки и исследования алгоритмов посимвольного приема для сигнальных конструкций на основе кодов в недвоичных полях Галуа $GF(2^m)$ и частотно-эффективных сигналов с двумерными «созвездиями», интенсивно используемых в приложениях. В этот класс входят сигналы с многоуровневой фазовой манипуляцией (ФМ-сигналы) и сигналы с квадратурной амплитудной манипуляцией (КАМ-сигналы) [2,5-9]. Этот подход позволяет расширить класс перспективных корректирующих кодов и согласуется с современным направлением развития теории помехоустойчивых кодов в недвоичных полях и сигнальных конструкций на их основе [8-12].

1. Постановка задачи

Пусть $H=(h_{ij};0\leq i< k;0\leq j< n)$ - проверочная матрица корректирующего блокового кода с параметрами (n,k); $\vec{B}=(b_j;0\leq j< n)$ - кодовое слово; h_{ij} и b_j являются элементами поля Галуа $GF(2^m)$ [1]. Здесь n — длина кодовых слов; k - параметр, задающий информационный объем кодового слова mk; n-k — число проверочных символов; r=k/n — кодовая скорость.

Элементы b_j поля $GF(2^m)$ задаются в виде многочлена степени m [1]

$$b_{j}(x) = \sum_{p=0}^{m-1} \alpha_{p}(b_{j})x^{p}, \ \alpha_{p}(b_{j}) \in GF(2).$$
 (1)

Операции сложения-умножения в поле $GF(2^m)$ выполняются по модулю неприводимого многочлена $\gamma(x)$ степени m [1].

Кодовые символы $b_i \in GF(2^m)$ определяют КАМ-M-сигналы и ФМ-M-сигналы путем отображения последовательности m двоичных символов $\alpha_p(b_i)$, $0 \le p < m$ в соответствующие сигнальные «созвездия» с объемом $M = 2^m$ на тактовых интервалах [2,3]. Класс этих двумерных сигналов широко используется в цифровых системах связи различного назначения вследствие высокой частотной эффективности $\eta = R/F = rm$ бит/с/Гц [3].

На рис. 1 приведен вид «созвездия» КАМ-сигналов объемом $M=2^4$ - сопоставление четырех двоичных символов $\alpha_p(b_i)$ комплексным амплитудам $\dot{A}_i=A_i\exp(j\varphi_i)$ выполняется с использованием правила Грея, i=0,1,...,M-1. Вероятность ошибки P_6 при приеме КАМ-сигналов с объемом $M=2^m$ (m – четное) вычисляется с использованием соотношения [2,13]

$$P_6 = \frac{1 - (1 - P)^2}{\log_2 M},\tag{2}$$

здесь
$$P = \frac{2(L-1)}{L}Q\left(\sqrt{\frac{3}{L^2-1}\frac{E_{\mathrm{cp}}}{N_0}}\right); \quad L = 2^{k/2}; \quad E_{\mathrm{cp}} = mE_{\mathrm{6,cp}}, \quad E_{\mathrm{6,cp}} - \text{ средняя}$$

энергия сигналов на бит; $Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp(-y^2/2) dy$.

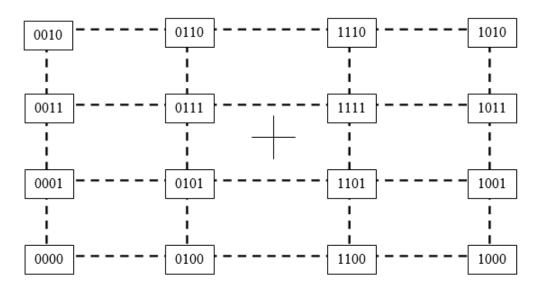


Рис. 1. «Созвездие» КАМ-сигналов объемом $M=2^4$

На рис. 2 приведен вид «созвездия» ФМ-сигналов объемом $M=2^4-$ сопоставление четырех двоичных символов $\alpha_p(b_i)$ фазам $\varphi_i=\frac{2\pi i}{16}$ выполняется с использованием правила Грея, i=0,1,...,M-1 [2,13].

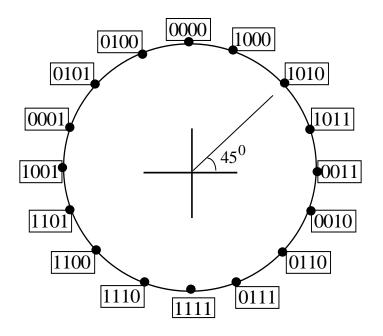


Рис. 2. «Созвездие» ФМ-сигналов объемом $M=2^4$

Вероятность ошибки $P_{\tilde{0}}$ при приеме Φ М-M сигналов без использования корректирующих кодов определяется соотношением [13]:

$$P_{\delta} = \frac{1}{\log_2 M} \left(1 - \int_{-\pi/M}^{\pi/M} p(\theta) d\theta \right), \tag{3}$$

здесь $p(\theta)$ — плотность распределения фазы:

$$p(\theta) = 1 - \frac{1}{2\pi} \exp(-\frac{mE_6}{N_0} \sin^2(\theta)) \int_0^\infty x \cdot \exp\left(-\frac{1}{2} (x - \sqrt{\frac{2mE_6}{N_0}} \cos(\theta))^2\right) dx, \qquad (4)$$

здесь E_{6} — энергия сигналов на информационный бит.

Нормированные отсчеты \dot{y}_i с выхода демодулятора рассматриваемых сигналов для каждой квадратурной составляющей представляют случайные величины $\mathrm{Re}(\dot{y}_i)$, $\mathrm{Im}(\dot{y}_i)$ с средними $\sqrt{\frac{2mr_iE_{6,\mathrm{cp}}}{N_0}}\mathrm{cos}(\varphi_i)$, $\sqrt{\frac{2mr_iE_{6,\mathrm{cp}}}{N_0}}\mathrm{sin}(\varphi_i)$ и с единичной дисперсией [7]. Здесь r_i , $E_{6,\mathrm{cp}}$ — параметры, определяемые видом «созвездия»: для ФМ-сигналов выполняются условия r_i =1 и $E_{6,\mathrm{cp}}$ = E_6 , для «созвездия» КАМ-сигналов на рис. 1 значения r_i определяются расстоянием Евклида огибающей сигнала $s_i(t)$ до начала координат с нормированным значением $E_{6,\mathrm{cp}}$ = E_6 /0.625 [2].

Соответствующие апостериорные вероятности $p(\dot{y}|b_i)$ для канала с аддитивным белым гауссовским шумом (АБГШ) с односторонней спектральной плотностью N_0 задаются соотношением [2,7]:

$$p(\dot{y}|b_i) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}\left(\operatorname{Re}(\dot{y}_i) - A_i \cos(\varphi_i)\right)^2 + \left(\operatorname{Im}(\dot{y}_i) - A_i \sin(\varphi_i)\right)^2\right)\right), \tag{5}$$

здесь параметр $A_i = \sqrt{\frac{2mr_i E_{\mathsf{б,cp}}}{N_0}}$.

На вход приемного устройства поступает последовательность отсчетов с выхода сигнального демодулятора $\vec{Y} = (\dot{y}_i; 0 \leq i < n)$.

Оптимальное посимвольное правило приема заключается в вычислении апостериорных вероятностей для кодовых символов $\Pr(b_i = \beta | \vec{Y}), \ \beta \in GF(2^m)$ и

в принятии «жесткого» решения относительно переданного кодового символа $\hat{b_i}$ с использованием правила $\hat{b_i} = \max_{\beta \in GF(2^m)} \Pr(b_i = \beta \middle| \vec{Y})$ [4,6].

Апостериорные вероятности $\Pr(b_j = \beta | \vec{Y})$ задаются выражением:

$$\Pr(b_i = \beta | \vec{Y}) = \sum_{\vec{B}: b_i = \beta} \Pr(\vec{B} | \vec{Y}) = \sum_{\vec{B}: b_i = \beta} \frac{\Pr(\vec{B})}{p(\vec{Y})} p(\vec{Y} | \vec{B}), \tag{6}$$

здесь $\Pr(\vec{B}|\vec{Y})$ — условная вероятность кодового слова \vec{B} для реализации \vec{Y} .

Функция правдоподобия $p(\vec{Y}|\vec{B})$ в (6) определяется моделью физического канала, для канала без памяти справедливо выражение $p(\vec{Y}|\vec{B}) = \prod_{i=0}^{n-1} p(\dot{y}_i|b_i)$.

Априорные вероятности сообщений \vec{B} полагаются равными $\Pr(\vec{B}) = 2^{-mk}$.

Сложность реализации (6), определяемая требуемым объемом вычислительных операций, можно оценить $P_1 \approx 2^{mk}$, даже для малых значений m,k вычисление (6) представляет трудноразрешимую проблему.

Суть задачи - дать описание производительного алгоритма оптимального посимвольного приема для сигнальных конструкций на основе корректирующих кодов в полях Галуа $GF(2^m)$, привести результаты его моделирования с целью оценки вероятностных характеристик для ряда сигнальных конструкций на основе класса частотно-эффективных сигналов (Φ M-сигналы, KAM-сигналы).

2. Алгоритм оптимального посимвольного приема сигналов

В работах [7,10,12] введены в рассмотрение функции $\omega_b(a)$ с номером b и аргументом a на множестве $b,a,d\in GF(2^m)$:

$$\omega_b(a) = \exp(j\pi(a \times b) \cdot d), \tag{7}$$

здесь $a \times b = a(x)b(x)$ — произведение элементов a,b в поле $GF(2^m)$; $a \cdot d = \sum_{i=0}^{m-1} a_i \cdot b_i$; поле $GF(2^m)$ и рассматриваемые арифметические операции в поле задаются неприводимым многочлен $\gamma(x)$ степени m.

Функции $\omega_b(a)$ принимают значения ± 1 .

При фиксированном $b \neq 0$ и для a_i , $0 \leq i < 2^m$ произведения $a_i \times b$ принимают все значения поля $GF(2^m)$ и функции $\omega_b(a)$ эквивалентны функциям Уолша $W_b(a)$ с перемеженными значениями их номеров. Функции Уолша $W_b(a)$ с длительностью 2^m определяются как $W_b(a) = \exp(j\pi a \cdot b) = \exp\left(\sum_{i=0}^{m-1} a_i b_i\right)$, a_i , b_i — двоичное представление чисел a и b

.Полное множество функций Уолша являются базисными функциями, справедливы условия ортогональности [6]:

$$\sum_{a \in GF(2^m)} W_b(a) W_c(a) = \sum_{a \in GF(2^m)} W_{b+c}(a) = \begin{cases} 0, b \neq 0, \\ 2^m, b = 0 \end{cases}$$
 (8)

Полное множество функций $\omega_b(a)$ представляет также ортогональный базис, по которому можно разложить в ряд дискретные функции длительностью 2^m .

При спектральном преобразовании дискретных функций в базисе Уолша применяются алгоритмы быстрого спектрального преобразования (БПУ) для к перемеженной базисной системе функций $\omega_b(a)$ [6,7].

Если неприводимый многочлен $\gamma(x)$ степени m, порождающий поле $GF(2^m)$, имеет вид $\gamma(x)=x^m+x^l+1$ $(1\leq l < m)$, элемент поля d имеет единичную компоненту на (k-1)-ой позиции и нулевые на остальных позициях, то перемежение номеров b,b' для функций $W_b(a)=w_{b'}(a)$ определяется соотношением для компонент $b_i,b_i',\ 0\leq i < m$ [6,7]:

$$b'_{i} = \begin{cases} b_{l-i-1}, 0 \le i < l \\ b_{m+l-i-1}, l \le i < m \end{cases}$$
 (9)

В таблице 1 приведены порождающие многочлены $\gamma(x)$ с требуемым представлением для полей $GF(2^3)$, $GF(2^4)$, $GF(2^6)$ [1].

Таблица 1. Порождающие многочлены $\gamma(x)$ для полей Галуа $GF(2^m)$.

Поле Галуа	$\gamma(x)$
$GF(2^3)$	x^3+x+1
$GF(2^4)$	$x^4 + x + 1$
<i>GF</i> (2 ⁶)	$x^6 + x + 1$

Алгоритм оптимального посимвольного приема сигнальных конструкций на основе корректирующих кодов в поле $GF(2^m)$ включает три этапа [7,10,11].

На первом этапе выполняется спектральное преобразование в базисе $\omega_b(a)$ с размерностью 2^m над последовательностью $p(y_l|b(l))$ с использованием БПУ с учетом перемежения спектральных компонент (9):

$$C_l(r) = \sum_{b(l) \in GF(2^m)} p(y_l | b(l)) w_{b(l)}(r), \ r \in GF(2^m), \tag{10}$$

здесь l = 0,1,...,n-1 — номер позиции кодовых символов.

На втором этапе вычисляется спектральное множество $\{T_l(\lambda)\}$ с использованием вычисленного множества $C_l(r)$ и множества кодовых слов R дуального кода C_H с параметрами (n,n-k):

$$T_{l}(\lambda) = \frac{1}{\sum_{\substack{r_{p}: R \in C_{H} \ p = 0}} \sum_{p = 0}^{n-1} C_{p}(r_{p}) \prod_{\substack{r_{p}: R \in C_{H} \ p = 0}}^{n-1} C_{p}(r_{p}) \frac{C_{l}(\eta - \lambda)}{C_{l}(\eta)}, \ \lambda \in GF(2^{m}). \ (11)$$

Сложность вычисления (11) оценивается как $P_2 \cong 2^{m(n-k)}$, для n-k << k справедливо условие $P_2 << P_1$.

На третьем этапе вычисляются апостериорные вероятности $\Pr(b(l) = \beta | \vec{Y})$ с использованием обратного спектрального преобразования над $\{T_l(\lambda)\}$ (используется БПУ с учетом перемежения):

$$Pr(b(l) = \beta | \vec{Y}) = \sum_{\lambda \in GF(2^m)} T_l(\lambda) \omega_{\beta}(\lambda).$$
 (12)

Приведенный алгоритм посимвольного приема является наиболее простым для сигнальных конструкций на основе корректирующего кода с общей проверкой на четность [10,14]. В этом случае дуальный код C_H с параметрами (k+1,k) содержит кодовые слова объемом 2^m в виде последовательностей одинаковых элементов $\alpha \in GF(2^m)$ длительностью k+1 [1,7].

3. Результаты моделирования

На рис. 3, рис. 4 приведены вероятностные характеристики P_6 в зависимости от отношения сигнал/помеха E_6/N_0 для АБГШ канала при приеме сигнальных конструкций на основе КАМ-M-сигналов и Φ М-M-сигналов с объемом $M=2^4$ и простого корректирующего кода с общей проверкой на четность в поле $GF(2^4)$, порождающий многочлен которого приведен в таблице 1. Вид сигнальных «созвездий» рассматриваемых сигналов и правила Грея отображения последовательности передаваемых символов в соответствующие комплексные огибающие сигналов приведены на рис. 1, рис. 2.

Вероятностные характеристики получены путем моделирования приведенного алгоритма оптимального посимвольного приема при передаче кодовых слов с информационным объемом 100 битов. Число информационных символов, эквивалентных элементам поля $GF(2^4)$, равно k=25 (кодовая скорость r=25/26, спектральная эффективность $\eta=100/26$ бит/с/Гц).

При выполнении моделирования производилась интервальная оценка вероятности P_6 путем вычисления частости $w = \frac{x}{u}$. Здесь x — число ошибочных

решений в последовательности испытаний u. Требуемое количество вычислительных экспериментов u определяется размером доверительного интервала, вероятностью P_6 , доверительной вероятностью $P_{\text{дов}}$ [15]. Например, для значения $P_6 = 10^{-5}$, доверительного интервала $[0.5P_6, 1.5P_6]$ и $P_{\text{дов}} = 0.95$ требуемое количество экспериментов оценивается значением 15000000.

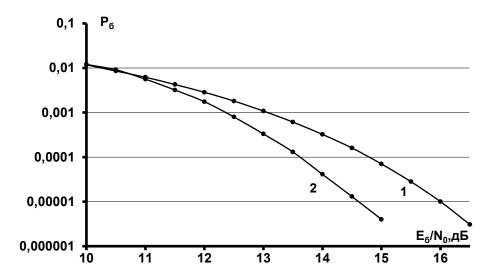


Рис. 3. Зависимости вероятности ошибки P_6 : 1 – посимвольный прием КАМ-16-сигналов без кодирования; 2 - посимвольный прием сигнальных конструкций на основе КАМ-16-сигналов и кода с проверкой на четность в поле $GF(2^4)$

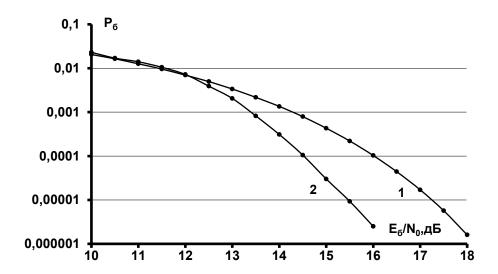


Рис. 4. Зависимости вероятности ошибки P_6 : 1 — посимвольный прием ФМ-16-сигналов без кодирования; 2 — посимвольный прием сигнальных конструкций на основе ФМ-16-сигналов и кода с проверкой на четность в поле $GF(2^4)$

Функции правдоподобия $p(y_l|b(l))$ при реализации алгоритма оптимального посимвольного приема сигнальных конструкций вычислялись для модели канала без памяти с использованием квадратурных сигнальных составляющих с выхода сигнального демодулятора.

Кривые 1 на рис. 3, рис. 4 соответствуют вероятностям P_6 для КАМ-16-сигналов и ФМ-16-сигналов без кодирования, вычисленным с использованием соотношения (2) и соотношения (3). Видно, что для $P_6 = 10^{-5}$ КАМ-16-сигналы обеспечивают энергетический выигрыш до 1.25 дБ по отношению к ФМ-16-сигналам, при уменьшении P_6 значения энергетического выигрыша увеличиваются.

Вероятностные кривые 2 на рис. 3, рис. 4 соответствуют результатам моделирования алгоритма посимвольного приема рассматриваемых сигнальных конструкций. Видно, что для $P_6 = 10^{-5}$ применение приведенного алгоритма оптимального посимвольного приема сигнальных конструкций на основе КАМ-16-сигналов обеспечивает энергетический выигрыш до 1.5 дБ по отношению к передаче и приему этих сигналов без кодирования. Применение приведенного алгоритма оптимального посимвольного приема сигнальных конструкций на основе ФМ-16-сигналов обеспечивает энергетический выигрыш до 1.25 дБ по отношению к передаче и приему этих сигналов без кодирования. При уменьшении P_6 значения энергетических выигрышей увеличиваются.

Заключение

Приведено описание алгоритма оптимального посимвольного приема сигнальных конструкций на основе частотно-эффективных сигналов с двумерными «созвездиями», интенсивно используемых в приложениях, и на основе блоковых корректирующих кодов в недвоичных полях Галуа $GF(2^m)$, формируемых по модулю неприводимого многочлена степени m. Этот подход согласуется с современным направлением развития теории корректирующих

помехоустойчивых кодов в недвоичных полях и сигнальных конструкций на их основе. Посимвольный прием минимизирует вероятность ошибки на кодовый символ в отличие от известного правила максимального правдоподобия, минимизирующего вероятность ошибки на кодовое слово. Основу алгоритма посимвольного приема составляет спектральное преобразование в базисе Уолша-Адамара, размерность которого определяется размерностью поля 2^m . Сложность алгоритма посимвольного приема определяется размерностью дуального кода, что обусловливает перспективность его применения для помехоустойчивых кодов с высокой кодовой скоростью.

Исследование вероятностных характеристик рассматриваемого алгоритма посимвольного приема произведено путем его моделирования для сигнальных конструкций на основе сигналов с многоуровневой фазовой манипуляцией (ФМ-16-сигналы) и сигналы с квадратурной амплитудной манипуляцией (КАМ-16-сигналы) и простого корректирующего кода с общей проверкой на четность в поле $GF(2^4)$. Показано, что применение алгоритма посимвольного приема обеспечивает энергетический выигрыш для вероятности ошибки $P_6 = 10^{-5}$ до 1.25...1.5 по отношению к рассматриваемым сигналам без кодирования. При уменьшении P_6 значения энергетических выигрышей увеличиваются.

Разработка и исследование вычислительных процедур итеративного приема на основе рассмотренного алгоритма посимвольного приема для более сложных корректирующих кодов в недвоичных полях $GF(2^m)$ (например, используя известные и широко используемые в приложениях корректирующие коды Рида-Соломона), представляет перспективное направление исследований.

Финансирование: Работа выполнена при финансовой поддержке РФФИ (проект №20-07-00525)

Литература

- 1. Питерсон У., Уэлдон Э. *Коды, исправляющие ошибки*. Москва, Мир. 1976. 594 с.
- 2. Зюко А.Г., Фалько А.И., Панфилов И.П., Банкет В.Л., Иващенко П.В. Помехоустойчивость и эффективность систем передачи информации. Москва, Радио и связь. 1985. 272 с.
- 3. Скляр Б. *Цифровая связь. Теоретические основы и практическое применение*. Москва, Издательский дом «Вильямс». 2003. 1104 с.
- 4. Johnson S.J. *Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes.* Cambridge, Univ. Press. 2010. 335 p.
- 5. Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications Part 2: DVB-S2 Extensions (DVB-S2X) DVB. Document A083-2. European Broadcasting Union CH-1218. Geneva. 2020. 159 р. Режим доступа: https://dvb.org/wp-content/uploads/2019/10/A083-2_DVB-S2X_Draft-EN-302-307-2-v121_Feb_2020.pdf
- Nazarov L.E., Smolyaninov V.M. Use of fast Walsh-Hadamard transformation for optimal symbol-by-symbol binary block codes decoding. *Electronics Letters*. 1998.
 V.34. №3. P.261-262. https://doi.org/10.1049/el:19980186
- 7. Назаров Л.Е., Батанов В.В. Исследование помехоустойчивости оптимального посимвольного приема фазоманипулированных сигналов с корректирующими кодами в недвоичных полях Галуа. *Радиотехника и электроника*. 2022. Т.67. №8. С.782-787. https://doi.org/10.31857/S0033849422080137
- 8. Steiner F., Bocherer G., Liva G. Bit-Metric Decoding of Non-Binary LDPC codes with Probabilistic Amplitude Shaping. *IEEE Communications Letters*. 2018. V.22. №11. P.2210-2213. https://doi.org/10.1109/LCOMM.2018.2870180
- Yeo S., Park I.-C. Improved Hard-Reliability Based Majority-Logic Decoding for Non-Binary LDPC Codes. *IEEE Transactions on Information Theory*. 2018. V.64.
 №7. P.5170-5178. https://doi.org/10.1109/LCOMM.2016.2623783

- 10. Назаров Л.Е., Шишкин П.В. Алгоритмы посимвольного приема сигналов на основе кодов с проверкой в поле $GF(2^m)$. Журнал радиоэлектроники [электронный журнал]. 2018. №12. https://doi.org/10.30898/1684-1719.2018.12.10
- 11. Назаров Л.Е. Помехоустойчивость оптимального посимвольного приема сигналов в недвоичных полях Галуа. *Физические основы приборостроения*. 2020. №2. C.10-15. https://doi.org/10.25210/jfop-2002-010015
- 12. Назаров Л.Е., Шишкин П.В. Исследование помехоустойчивости алгоритма оптимального посимвольного приема сигналов, соответствующих кодам с проверкой на четность в недвоичных полях. *Радиотехника и электроника*. 2019. Т.64. №9. С.910-915. https://doi.org/10.1134/S0033849419080138
- 13. Proakis J.G., Salehi M. *Digital communication*. 5 Edition. McGraw –Hill, Hugher Education. 2001. 1150 p.
- 14. Ping Li, Chan S., Yeung K.L. Efficient soft-in-soft-out sub-optimal decoding rule for single parity check codes. *Electronic Letters*. 1997. V.33. №19. P.1614-1616. https://doi.org/10.1049/el:19971092
- 15. Боровков А.А. *Математическая статистика. Оценка параметров. Проверка гипотез.* Москва, Наука. 1984. 472 с.

Для цитирования:

Назаров Л.Е. Алгоритм оптимального посимвольного приема частотно-эффективных сигналов с корректирующими кодами в недвоичных полях Галуа. *Журнал радиоэлектроники* [электронный журнал]. 2022. №10. https://doi.org/10.30898/1684-1719.2022.10.6