

DOI: https://doi.org/10.30898/1684-1719.2024.10.12 УДК: 621.3.01; 512.62

ИССЛЕДОВАНИЕ ОБУСЛОВЛЕННОСТИ ЗАДАЧИ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛИНЕЙНОГО N-ПОЛЮСНИКА ПО ВХОДНЫМ ЧАСТОТНЫМ ХАРАКТЕРИСТИКАМ

Н.В. Коровкин¹, А.Ю. Гришенцев², Т.Г. Миневич¹

¹ Санкт-Петербургский политехнический университет Петра Великого 195251, г. Санкт-Петербург, ул. Политехническая, д. 29, лит. Б ² Университет ИТМО 197101, г. Санкт-Петербург, Кронверкский пр-кт, д. 49, лит. А.

Статья поступила в редакцию 4 июля 2024 г.

Аннотация. Выполнены исследования обусловленности задачи определения параметров линейного N-полюсника по входным частным характеристикам. Актуальность исследований обоснована значительным интересом специалистов к численным методам решения обратных задач электротехники. Цель исследований: развитие методов расчета параметров элементов линейного N-полюсника по входным частотным характеристикам. Достижение поставленной цели способствует развитию теории и практики решения обратных задач радиофизики и линейных электрических цепей. Предложен метод расчета числа обусловленности и выбора необходимого множества частот обеспечивающих локальную минимизацию числа обусловленности задачи определения параметров линейного N-полюсника по входным частотным характеристикам. Предложены методы оценки относительных погрешностей расчета параметров линейной схемы. Для оценки предлагаемых решений, выполнено математическое моделирование физический И эксперимент. Результаты моделирования и эксперимента сведены в таблицы. Основным разработанный результатом исследований является метод

определения локального минимума числа обусловленности при решении задачи определения параметров линейного N-полюсника по входным частотным характеристикам. Дополнительно исследованы границы применимости методов оценки относительных погрешностей определения параметров линейных цепей. **Ключевые слова:** линейные электрические цепи, обратная задача, N-полюсник, частотные характеристики, обусловленность, методы решения.

Финансирование: Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, проект тематики научных исследований № 2019-0898.

Автор для переписки: Гришенцев Алексей Юрьевич, AGrishentsev@yandex.ru

Введение

В ряде исследований [1-3] и др. была показана актуальность разработки теории и практики решения обратной задачи линейных электрических цепей. К обратных подобным задачам сволится значительное число задач радиофизики и электротехники. Например, задачи определения параметров длинных линий, распространения электромагнитных волн сквозь слоистые среды. Значительное обобщение и разработка методов решения обратной задачи произведено в исследовании [4], в частности определен критерий определения линейного разрешимости задачи параметров элементов N-полюсника по току и напряжению на зажимах выходных полюсов. При этом открытыми остаются вопросы об определении наилучших значений частот, а в некоторых случаях и известных параметров схемы для решения обратной задачи на практике. Таким образом, обосновывается актуальность данной работы и определяется цель и задачи исследований. Цель исследований: развитие методов расчета параметров элементов линейного N-полюсника по входным частотным характеристикам. Достижение поставленной цели способствует развитию теории радиофизики и линейных электрических цепей и способствует распространению теоретических исследований В область практических измерений и расчетов.

1. Постановка задачи

В работе [4] было показано, что формальный вид обратной задачи определения параметров $x_k, k = \overline{1, K}$ элементов линейного N-полюсника по напряжению ЭДС $\dot{E}_{n_1,n_2}(\omega_d)$ и току $\dot{I}_{n_1,n_2}(\omega_d)$ на зажимах n_1, n_2 $(n_1 \neq n_2)$ линейной цепи сводится к выражению в общем виде:

$$\begin{cases} f_{n_{1},n_{2}}\left(\dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right),\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right),\omega_{d},\left\{h_{p}\right\},\left\{x_{k}\right\}\right)=0,\\ p=\overline{1,P};\ k=\overline{1,K},\\ n_{1},n_{2}=\overline{1,N};\ n_{1}\neq n_{2};\ d=\overline{1,D}, \end{cases}$$
(1)

где $\{h_p\}$ – множество R, L, C компонентов с известными значениями параметров $h_p, p = \overline{1, P}$ и $\{x_k\}$ – множество R, L, C компонентов с неизвестными значениями параметров $x_k, k = \overline{1, K}$; $\omega_d = 2\pi f_d, d = \overline{1, D}$ – круговые частоты, для которых регистрируется ЭДС $\dot{E}_{n_1, n_2}(\omega_d)$ и ток $\dot{I}_{n_1, n_2}(\omega_d)$ на зажимах n_1, n_2 . Предметом решения обратной задачи является поиск значений $x_k, k = \overline{1, K}$.

В ходе исследований [4] показано, что выражение (1) сводится к полиному вида:

$$P(\omega_d, \{h_p\}, \{x_k\}) = \sum_{l_1...l_K} A_{l_1...l_K} x_1^{l_1} ... x_k^{l_k} ... x_K^{l_K} = 0,$$
(2)

где $A_{l_1...l_k...l_K}$ – коэффициенты полинома, вычисляемые как функции от $\{\dot{E}_{n_1,n_2}(\omega_d), \dot{I}_{n_1,n_2}(\omega_d), \omega_d, \{h_p\}, \{\omega_d\}\}; l_1, ..., l_k, ..., l_K$ – степени неизвестных и индексы коэффициентов, соответственно.

В работе [4] доказано, что число независимых уравнений ограниченно числом различных степеней при ω_d в (2).

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №10, 2024</u>

При этом остаются открытым следующие вопросы:

о выборе частот *ω_d* для наилучшей обусловленности уравнений получаемых из (2);

– о погрешности вычисления $x_k, k = \overline{1, K}$ в результате погрешности измерений $\dot{E}_{n_1, n_2}(\omega_d)$ и $\dot{I}_{n_1, n_2}(\omega_d)$;

— о погрешности вычисления $x_k, k = \overline{1, K}$ в результате погрешности измерений компонентов схемы с известными значениями параметров $\{h_p\}$.

Поиску ответов на поставленные вопросы посвящена данная работа.

2. Различие модельных и экспериментальных форм

Уравнение (2) можно записать в виде:

$$\dot{E}_{n_1,n_2}(\omega_d)G(\omega_d,\{h_p\},\{x_k\}) - \dot{I}_{n_1,n_2}(\omega_d) = 0, \qquad (3)$$

где $G(\omega_d, \{h_p\}, \{x_k\})$ – функция, определяющая комплексную проводимость на зажимах n_1, n_2 $(n_1 \neq n_2)$ линейной цепи [5]. В свою очередь $G(\omega_d, \{h_p\}, \{x_k\}) = \frac{P_U(\omega_d, \{h_p\}, \{x_k\})}{P_I(\omega_d, \{h_p\}, \{x_k\})}$, где $P_U(\omega_d, \{h_p\}, \{x_k\})$ и $P_I(\omega_d, \{h_p\}, \{x_k\})$ –

некоторые полиномы.

При математическом моделировании ток $\dot{I}_{n_1,n_2}(\omega)$ вычисляется как функция вида:

$$\dot{I}_{n_1,n_2}(\omega_d) = \dot{E}_{n_1,n_2}(\omega_d) G(\omega_d, \{h_p\}, \{\overline{x}_k\}), \tag{4}$$

причем для определения тока номинальные значения всех элементов полагают известными, включая те, что рассчитываются в ходе моделирования $x_k, k = \overline{1, K}$, поэтому для того чтобы отметить данную особенность в выражении обозначены $\overline{x}_k, k = \overline{1, K}$ – точные значения принятые в (4) известными для вычисления тока $\dot{I}_{n_1, n_2}(\omega)$.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №10, 2024</u>

Анализ (3) показывает, что возможны следующие формы построения моделей. Первая форма наиболее близка к экспериментальному подходу и заключается в том, что при заданном значении ЭДС $\dot{E}_{n_1,n_2}(\omega_d)$ (при моделировании удобно брать $\dot{E}_{n_1,n_2}(\omega_d)=1$) ток $\dot{I}_{n_1,n_2}(\omega)$ вычисляется как комплексное число для различных фиксированных значений ω_d , $d=\overline{1,D}$, в результате подстановки в (3) получается полином следующей формы:

$$\dot{E}_{n_{1},n_{2}}(\omega_{d})P_{U}(\omega_{d},\{h_{p}\},\{x_{k}\})-\dot{I}_{n_{1},n_{2}}(\omega_{d})P_{I}(\omega_{d},\{h_{p}\},\{x_{k}\})=0,$$
(5)

решение которого, при достаточном числе независимых уравнений, позволяет вычислить $x_k, k = \overline{1, K}$.

Вторая форма модели образуется в результате подстановки (4) в (3) в общем виде $\dot{E}_{n_1,n_2}(\omega_d)G(\omega_d,\{h_p\},\{x_k\})-\dot{E}_{n_1,n_2}(\omega_d)G(\omega_d,\{h_p\},\{\bar{x}_k\})=0$, и после сокращения ЭДС $\dot{E}_{n_1,n_2}(\omega_d)$, возможно получение уравнений двух видов:

$$P_{U}\left(\omega_{d},\left\{h_{p}\right\},\left\{x_{k}\right\}\right)P_{I}\left(\omega_{d},\left\{h_{p}\right\},\left\{\overline{x}_{k}\right\}\right)-P_{U}\left(\omega_{d},\left\{h_{p}\right\},\left\{\overline{x}_{k}\right\}\right)P_{I}\left(\omega_{d},\left\{h_{p}\right\},\left\{x_{k}\right\}\right)=0, (6)$$

или, что следует из условий задачи:

$$\begin{cases} P_U(\omega_d, \{h_p\}, \{x_k\}) - P_U(\omega_d, \{h_p\}, \{\overline{x}_k\}) = 0\\ P_I(\omega_d, \{h_p\}, \{x_k\}) - P_I(\omega_d, \{h_p\}, \{\overline{x}_k\}) = 0 \end{cases}$$
(7)

Полученные формы (каждая по-своему) могут представлять интерес для исследований, например, в работе [4] в качестве примеров рассмотрены модели вида (6). В результате использования (4), выражающего ток $\dot{I}_{n_1,n_2}(\omega)$ в общем виде и содержащего точные решения $\bar{x}_k, k = \overline{1, K}$, в уравнениях моделей (6, 7) имеется некоторая дополнительная информация недоступная при эксперименте. Поэтому, например, выражение (6) после раскрытия скобок может содержать больше различных степеней при ω_d , чем (5), а значит выражение (6) по критерию, сформулированному в [4] имеет более высокое значение числа верхней границы независимых уравнений. Причем в (6) число степеней при ω_d будет зависеть от выбранных в качестве неизвестных

параметров $x_k, k = \overline{1, K}$. Дополнительная информация позволяет получить форму (7) разделив уравнения на две независимые части.

С точки зрения развития тории, наиболее востребованной для экспериментальной реализации предлагаемых методов интересен анализ моделей в форме (3, 5).

3. Влияние погрешности измерений на точность решения

При проведении измерений неизбежны погрешности. Поэтому необходимо иметь инструментарий оценки погрешности решения В зависимости от погрешности измерений. Рассмотрим пример задачи, когда схема собрана, и значения номиналов $h_p, p = \overline{1, P}$ известных компонентов измерены с достаточно высокой точностью. В таком случае для формирования уравнений (5) приходится измерять ЭДС $\dot{E}_{n_1,n_2}(\omega_d)$ и ток $\dot{I}_{n_1,n_2}(\omega_d)$ на зажимах n_1, n_2 $(n_1 \neq n_2)$ линейной цепи. Именно эти измерения могут содержать некоторую ошибку. Причем результаты моделирования показывают, что $\dot{E}_{n_1,n_2}(\omega_d) + \Delta \dot{E}_{n_1,n_2}(\omega_d)$ и $\dot{I}_{n_1,n_2}(\omega_d) + \Delta \dot{I}_{n_1,n_2}(\omega_d)$ возмущение оказывает значительное влияние на ошибку вычисления искомых параметров $x_k, k = \overline{1, K}$. Таким образом, необходимо исследовать влияние ошибки измерений $\Delta \dot{E}_{n_1,n_2}(\omega_d)$ и $\Delta \dot{I}_{n_1,n_2}(\omega_d)$ на погрешность вычисления $x_k, k = \overline{1, K}$. Практически оценить ошибку $\Delta \dot{E}_{n_1,n_2}(\omega_d)$ и $\Delta \dot{I}_{n_1,n_2}(\omega_d)$ можно по технической документации используемых средств измерения. Например, для цифровых средств измерения ошибка по амплитуде будет определяться разрядностью аналого-цифрового преобразователя (АЦП), а ошибка по фазе – частотой дискретизации. При этом относительная фазовая ошибка при повышении частоты измеряемого сигнала будет нарастать. Поэтому целесообразно, для снижения ошибки измерений использовать ПО возможности низкие частоты измеряемых сигналов. Дополнительную шумовую ошибку будут вносить аналоговые цепи измерительных приборов, такая ошибка обычно имеет вид нормального

распределения, и при необходимости ей можно противодействовать, используя серию повторных измерений с последующим усреднением.

Запишем уравнение (5) в виде:

$$\dot{E}_{n_1,n_2}(\omega_d)P_U(\omega_d,\{h_p\},\{x_k\}) = \dot{I}_{n_1,n_2}(\omega_d)P_I(\omega_d,\{h_p\},\{x_k\}).$$
(8)

Из выражения (8) не сложно заметить, что при наличии ошибки измерений (возмущении) $\Delta \dot{E}_{n_1,n_2}(\omega_d)$ и $\Delta \dot{I}_{n_1,n_2}(\omega_d)$, баланс между правой и левой частью (8) может быть нарушен так, что условие $\forall x_k, (x_k \in \mathbb{R}) \& (x_k > 0)$ отделения посторонних корней, справедливое для теоретического моделирования в точных значениях, перестанет выполняться и, например, наиболее близкие к точному решению корни могут быть комплексными и/или содержать значения (вещественной или мнимой части) меньше нуля.

При практических измерениях имеет смысл считать $\dot{E}_{n_1,n_2}(\omega_d)$ вещественной величиной, т.е. производить отсчет фазы тока $\dot{I}_{n_1,n_2}(\omega_d)$ от фазы ЭДС $\dot{E}_{n_1,n_2}(\omega_d)$. Таким образом, анализ ошибки измерений можно свести к ошибке измерения тока $\Delta \dot{I}_{n_1,n_2}(\omega_d)$:

$$\begin{cases} \dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right)G\left(\omega_{d},\left\{h_{p}\right\},\overline{x}_{1}+\Delta x_{1},\overline{x}_{2},...,\overline{x}_{K}\right)=\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)+\Delta\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)\\ \dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right)G\left(\omega_{d},\left\{h_{p}\right\},\overline{x}_{1},\overline{x}_{2}+\Delta x_{2},...,\overline{x}_{K}\right)=\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)+\Delta\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)\\ \dots\\ \dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right)G\left(\omega_{d},\left\{h_{p}\right\},\overline{x}_{1},\overline{x}_{2},...,\overline{x}_{K}+\Delta x_{K}\right)=\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)+\Delta\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)\\ d=\overline{1,D}\end{cases}$$

$$(9)$$

где $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_K)_d$ – вектор точных решений, и $\Delta_d = (\Delta x_1, \Delta x_2, ..., \Delta x_K)_d$ – вектор ошибки, рассчитаны для различных частот ω_d , $d = \overline{1, D}$.

Ошибки вычисления номиналов $x_k, k = \overline{1, K}$ отдельных компонентов в зависимости от ошибки измерения токов (9), в предположении, что параметры известных компонентов измерены точно, предлагается определять при помощи выражения:

$$\Delta x_{k} = \pm \sqrt{\frac{1}{D} \sum_{d=1}^{D} \left| \operatorname{Re}\left(\Delta x_{k}\left(\omega_{d}\right) \right) \right|^{2}} .$$
(10)

В данном случае (10) запись $\Delta x_k(\omega_d)$ означает, что $\Delta x_k(\omega_d) \in (\Delta x_1, \Delta x_2, ..., \Delta x_K)_d.$

4. Обусловленность системы нелинейных уравнений

Произведем поиск частот, обеспечивающих локальную минимизацию числа обусловленности, используя матрицу Якоби [6]. Для уравнения (3) матрица Якоби имеет вид:

$$\mathbf{J}(\boldsymbol{\omega}_{d}, \{\boldsymbol{h}_{p}\}, \{\boldsymbol{x}_{k}\}) = \left(\frac{\partial \dot{I}_{n_{1}, n_{2}}(\boldsymbol{\omega}_{d})}{\partial \boldsymbol{x}_{k}}\right) = \dot{E}_{n_{1}, n_{2}}(\boldsymbol{\omega}_{d}) \left(\frac{\partial G(\boldsymbol{\omega}_{d}, \{\boldsymbol{h}_{p}\}, \{\boldsymbol{x}_{k}\})}{\partial \boldsymbol{x}_{k}}\right).$$
(11)

где $d = \overline{1, D}$ – номер строки; $k = \overline{1, K}$ – номер столбца матрицы Якоби. Обратную матрицу Якоби [7] обозначим: $\mathbf{J}^{-1}(\omega_d, \{h_p\}, \{x_k\})$, тогда число обусловленности:

$$\chi(\mathbf{J}) = \left\|\mathbf{J}\right\| \left\|\mathbf{J}^{-1}\right\|.$$
(12)

В (12) **||J|**| обозначена норма матрицы, как известно из теории матриц [7, 8] существует три вида легко вычислимых и часто используемых матричных норм: строковая норма (г-норма); столбцовая норма (с-норма) и норма Фробениуса (F-норма) которые и предлагается использовать. Как известно из теории матриц данные нормы эквивалентны [9].

При изменении частот ω_d , $d = \overline{1, D}$, число обусловленности $\chi(\mathbf{J})$ будет образовывать некоторую поверхность в евклидовом пространстве \mathbb{R}^D , что можно записать как: $\chi(\mathbf{J})(\omega_1, ..., \omega_d, ..., \omega_D)$ или кратко $\chi(\mathbf{J})(\{\omega_d\})$, при этом число D ограниченно числом независимых уравнений (5), и не превосходит число неизвестных $x_k, k = \overline{1, K}$. Глобальный минимум поверхности $\chi(\mathbf{J})(\{\omega_d\})$ будет обеспечивать наилучшую обусловленность, а локальный минимум будет обеспечивать наилучшую обусловленность в некоторой окрестности минимального значения. Во многих случаях достаточно найти некоторый

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №10, 2024

локальный минимум (который в частом случае может быть и глобальным) учитывая при поиске в пространстве \mathbb{R}^{D} критерии практической доступности измерений на выбранных частотах, т.е. ограничение по частоте снизу ω_{min} и сверху ω_{max} . Запишем в формальном виде постановку задачи определения частот для минимизации числа обусловленности:

$$\begin{cases} \chi(\mathbf{J})(\{\omega_d\}) = \|\mathbf{J}\| \| \mathbf{J}^{-1} \| \to \min \\ \omega_n \neq \omega_m; \ n \neq m; \ n, m = \overline{1, D} \\ \omega_{\min} \le \omega_d \le \omega_{\max}; \ d = \overline{1, D} \end{cases}$$
(13)

Решение задачи поиска минимума (13) позволяет выбрать некоторое множество частот ω_d , $d = \overline{1, D}$ использование которых, при решении задачи (2), способствует повышению точности решения за счет уменьшения вычислительной погрешности.

Анализ (11) позволяет вполне обоснованно предположить, что для одной и той же схемы при построении решения относительно неизменной пары полюсов $n_1, n_2 = \overline{1, N}$; $n_1 \neq n_2$; $n_1 = const$; $n_2 = const$ с ростом размерности задачи, т.е. с увеличением числа неизвестных $x_k, k = \overline{1, K}$ и следовательно числа уравнений (для каждой пары полюсов число уравнений ограниченно сверху числом различных степеней при ω_d в (2)), будет наблюдаться тенденция к увеличению числа обусловленности $\chi(\mathbf{J})$. Поэтому в общем случае сформулируем следующую рекомендацию: при определении параметров N-полюсников следует так распределять уравнения между полюсами N что бы для каждой пары различных полюсов $n_1, n_2 = \overline{1, N}$; $n_1 \neq n_2$ использовать минимальное число уравнений от ω .

Выражение (13) может быть использовано при подборе значений параметров $h_p, p = \overline{1, P}$, так что бы получить хорошо обусловленную задачу вида (2).

Используя матрицу Якоби $\mathbf{J}(\omega_d, \{h_p\}, \{x_k\})$ и число обусловленности $\chi(\mathbf{J})(\{\omega_d\})$ можно записать выражение для оценки относительной ошибки [6, 9] вектора неизвестных номиналов $x_k, k = \overline{1, K}$ с учетом погрешности измерения номинальных значений известных компонентов:

$$\frac{\|\Delta \mathbf{x}_{k}\|}{\|\mathbf{\overline{x}}_{k}\|} \leq \chi(\mathbf{J})(\{\omega_{d}\}) \frac{\|\mathbf{J}(\omega_{d},\{\Delta h_{p}\},\{x_{k}\})\|}{\|\mathbf{J}(\omega_{d},\{h_{p}\},\{x_{k}\}) + \mathbf{J}(\omega_{d},\{\Delta h_{p}\},\{x_{k}\})\|},$$
(14)

где $\mathbf{J}(\omega_d, \{\Delta h_p\}, \{x_k\})$ – матрица Якоби, вычисленная для погрешности измерения $\Delta h_p, p = \overline{\mathbf{I}, P}$; $\|\Delta \mathbf{x}_k\|$ и $\|\overline{\mathbf{x}}_k\|$ – векторные нормы вектора ошибок $\Delta \mathbf{x}_k = (\Delta x_1, \Delta x_2, ..., \Delta x_K)$ и вектора точных значений $\overline{\mathbf{x}}_k = (\overline{x}_1, \overline{x}_2, ..., \overline{x}_K)$, соответственно. Отметим, что в данном случае $\overline{\mathbf{x}}_k$ обозначает вектор точных значений, а не точных решений, т.к. с учетом погрешностей измерения $\Delta \dot{E}_{n_1,n_2}(\omega_d), \ \Delta \dot{I}_{n_1,n_2}(\omega_d)$, и $\Delta h_p, p = \overline{\mathbf{I}, P}$, точные значения и точные решения будут отличаться друг от друга.

Для оценки относительной ошибки вычисления корней от погрешности $\Delta \dot{I}_{n_1,n_2}(\omega_d)$ измерения правой части, т.е. вектора токов $\dot{\mathbf{I}}_{n_1,n_2}(\omega_d) = (\dot{I}_{n_1,n_2}(\omega_d)); \omega_d, \ d = \overline{1,D}, \ \Delta \dot{\mathbf{I}}_{n_1,n_2}(\omega_d) = (\Delta \dot{I}_{n_1,n_2}(\omega_d)); \omega_d, \ d = \overline{1,D}$ запишем выражение:

$$\frac{\left\|\Delta \mathbf{x}_{k}\right\|}{\left\|\overline{\mathbf{x}}_{k}\right\|} \leq \chi(\mathbf{J})\left(\left\{\omega_{d}\right\}\right) \frac{\left\|\Delta \dot{\mathbf{I}}_{n_{1},n_{2}}\left(\omega_{d}\right)\right\|}{\left\|\dot{\mathbf{I}}_{n_{1},n_{2}}\left(\omega_{d}\right)\right\|}.$$
(15)

5. Численная модель

В качестве примера применения некоторых предлагаемых решений рассмотрим следующую задачу (рис. 1 а).

Рис. 1. а. – схема моделирования; b. – амплитудно-частотная характеристика комплексных компонент тока.

Запишем выражения, определяющие комплексные сопротивления цепи:

$$Z_1 = R_1 + j\omega L_1$$
, $Z_2 = R_2 + \frac{1}{j\omega C_2}$, $Z_3 = R_3 + j\omega L_3$. При этом приняты следующие

значения номиналов: $R_1 = 110 O_M$, $R_2 = 120 O_M$, $R_3 = 130 O_M$, $L_1 = 7 \cdot 10^{-4} \Gamma_H$, $C_2 = 4 \cdot 10^{-5} \Phi$, $L_3 = 9 \cdot 10^{-4} \Gamma_H$. Выражение связывающие ток $\dot{I}_{1,2}(\omega)$ и ЭДС $\dot{E}_{1,2}(\omega)$ на зажимах (1, 2) рассматриваемой схемы имеет следующий вид:

$$\dot{E}_{1,2}(\omega) \frac{\left(-1 - jC_2R_2\omega - jC_2R_3\omega + C_2L_3\omega^2\right)}{\left(-R_1 - R_3 - jL_1\omega - jL_3\omega - jR_1R_2C_2\omega - jR_1R_3C_2\omega - jR_2R_3C_2\omega + +R_1C_2L_3\omega^2 + R_2C_2L_1\omega^2 + R_2C_2L_3\omega^2 + R_3C_2L_1\omega^2 + jC_2L_1L_3\omega^3\right)} = \dot{I}_{1,2}(\omega). (16)$$

При приведении выражения (16) к общему знаменателю получится полином вида (5), содержащий следующие степени при $(\omega^0, \omega^1, \omega^2, \omega^3)$. Отметим, что при построении модели в форме (6) при замене R_1 на x_1 , получим полином следующего вида:

$$\dot{E}_{n_1,n_2}(\omega) \begin{pmatrix} -R_1 - j2C_2R_1R_2\omega - j2C_2R_1R_3\omega + 2C_2L_3R_1\omega^2 + C_2^2R_1R_2^2\omega^2 + \\ + 2C_2^2R_1R_2R_3\omega^2 + C_2^2R_1R_3^2\omega^2 + 2jC_2^2L_3R_1R_2\omega^3 + j2C_2^2L_3R_1R_3\omega^3 - \\ - C_2^2L_3^2R_1\omega^4 + \\ + \begin{pmatrix} 1 + j2C_2R_2\omega + j2C_2R_3\omega - 2C_2L_3\omega^2 - C_2^2R_2^2\omega^2 - 2C_2^2R_2R_3\omega^2 - \\ - C_2^2R_3^2\omega^2 - j2C_2^2L_3R_2\omega^3 - j2C_2^2L_3R_3\omega^3 + C_2^2L_3^2\omega^4 \end{pmatrix} = 0,$$

где степени при ω распределены следующим образом $(\omega^0, \omega^1, \omega^2, \omega^3, \omega^4)$, очевидно, что при ω появилась дополнительная степень ω^4 . В случае моделирования, при замене L_1 и C_2 на неизвестные, например, x_1, x_2 получим следующее распределение степеней ω : $(\omega^1, \omega^2, \omega^3, \omega^4, \omega^5)$. Еще в одном случае моделирования, при замене параметров всех компонентов схемы $R_1, R_2, R_3, L_1, C_2, L_3$ на $x_1, x_2, x_3, x_4, x_5, x_6$ получим следующее распределение степеней: $(\omega^0, \omega^1, \omega^2, \omega^3, \omega^4, \omega^5)$.

Используя полученное выражение (16) и учитывая, что число независимых уравнений не боле четырех (т.к. $(\omega^0, \omega^1, \omega^2, \omega^3))$, на основании (11, 12) произведем оценку числа обусловленности [10] и поиск локального минимума (13) для некоторых различных по числу и составу неизвестных параметров схемы (рис. 1), результаты расчетов сведем в таблицу 1.

Неизвестные параметры схемы	Число обусловленности, $\chi(\mathbf{J})(\{\omega_d\})$	Частота <i>Ф</i> ₁ , рад/с	Частота ω_2 , рад/с	Частота <i>Ш</i> ₃ , рад/с	Частота <i>0</i> ₄ , рад/с
R_1	1.000000	109.9454	—	—	—
R_2	1.000000	112.7109	_	_	_
<i>R</i> ₃	1.000000	146608.5	—	—	—
L_1	1.000000	1044.454	—	—	—
C_2	1.000000	110.2790	—	—	—
L_3	1.000000	108.6612	—	_	—
R_1, L_3	2.000003	13.79544	554576.4	_	_
R_1, L_1	2.090115	2.6774×10 ⁻⁶	3.611953	_	—
R_2, C_2	2.123485	0.000024	348005.0	—	—
R_2, R_3	2.562674	109.9940	1383.567	—	—
R_1, R_3	3.279135	0.000062	148987.5	—	—
R_1, R_2	7.637809	83.6682	4867.305	—	—
R_1, C_2	7.781067	0.000038	97.30868	—	—
L_1, C_2, L_3	9.722751	0.000115	0.296606	7.225629	_
R_1, C_2, L_3	15.70717	0.000034	2.362919	65462.83	_
R_1, R_2, R_3	19.66201	0.000067	125.7519	3831.616	—
R_1, R_2, C_2, L_3	27.45192	0.000086	2.1021×10^{-8}	2.165690	0.075747
R_1, R_2, R_3, C_2	262.6919	10^{-12}	81331.97	148380.1	498065.9
R_1, R_2, R_3, L_3	4674.809	1.2839×10^{-7}	64.58774	256.0866	509.5713
R_3, L_1, C_2, L_3	95211.91	0.000421	27.50423	62.56003	17906.63
R_1, L_1, C_2, L_3	206331.4	0.000001	21.98453	50.99225	18449.35
R_2, L_1, C_2, L_3	8.3499×10 ⁷	0.000122	0.003187	505.5904	1643.238

Таблица 1. Расчет числа обусловленности.

Для возможности визуального анализа выбранных частот на изображении (рис. 1 b) приведен график зависимости комплексных компонент тока $\dot{I}_{1,2}(\omega)$ от частоты, при ЭДС $\dot{E}_{1,2}(\omega)=1$.

Анализ данных таблицы 2, позволяет сделать вывод о тенденции значительного роста числа обусловленности для (16) с увеличением числа неизвестных параметров схемы (рис. 1 а). Можно отметить, что при некотором постоянном числе неизвестных параметров схемы наблюдается значительная вариабельность числа обусловленности, например, для четырех неизвестных параметров число обусловленности изменяется В пределах $\chi(\mathbf{J})(\{\omega_d\}) = 27.45192...8.349884 \times 10^7$, очевидно, что при значительных величинах числа обусловленности незначительные изменения тока $\dot{I}_{1,2}(\omega) \pm \Delta \dot{I}_{1,2}(\omega)$ приведут к существенным и недопустимым погрешностям определения искомых параметров схемы. Значительная вариабельность числа обусловленности при постоянном числе неизвестных параметров, позволяет сделать обоснованное предположение, о том, что можно выбрать такую топологию схемы и такие номиналы известных компонентов, которые позволят существенно снизить число обусловленности тем самым повысить точность решения. Подобная задача может быть предметом отдельного исследования.

Произведем оценку влияния погрешности $\dot{I}_{1,2}(\omega) \pm \Delta \dot{I}_{1,2}(\omega)$ на ошибку вычисления параметров схемы (рис. 1 а) используя (9, 10). Пусть при измерении тока $\dot{I}_{1,2}(\omega)$ образовалась ошибка $\Delta \dot{I}_{1,2}(\omega)$ изменившая амплитуду в ν раз и фазу на угол β , что эквивалентно умножению тока $\dot{I}_{1,2}(\omega)$ на комплексное число:

$$\left(\frac{\nu}{\sqrt{1+\mathrm{tg}^{2}(\beta)}}\pm j\frac{\nu\,\mathrm{tg}(\beta)}{\sqrt{1+\mathrm{tg}^{2}(\beta)}}\right),\,$$

которое является масштабирующим и поворачивающим множителем для комплексного числа. Далее оценим точность измерений, которую может предоставить некоторый АЦП при известном периоде дискретизации τ , c и

числе разрядов отдельных отсчетов *S*. Если положить, что два младших бита содержат некоторый шум образованный шумом аналоговых цепей и ошибку округления дискретизации, а при измерении используется не более 80% разрядов АЦП причем измеряется амплитуда гармонического сигнала, т.е. на каждую полуволну приходится половина используемых разрядов, то оценить относительную ошибку измерения амплитуды можно при помощи следующего выражения: $\frac{2^2}{2^{(0.8S)-1}} = 2^{3-0.8S}$. Относительную ошибку фазы при круговой частоте сигнала $2\pi f$ и периоде дискретизации τ можно оценить с помощью выражения: $\pm \tau f$ и в абсолютном виде $\pm 2\pi \tau f$, рад. Учитывая полученное ранее выражение коэффициент возмущения тока $\dot{I}_{1,2}(\omega)$ зависящий от частоты сигнала ω , разрядности АЦП *S* и периода дискретизации τ имеет вид:

$$k_{Err}(\omega,\tau,S) = (1 \pm 2^{3-0.8S}) \left(\frac{1}{\sqrt{1 + \mathrm{tg}^2(\omega\tau)}} \pm j \frac{\mathrm{tg}(\omega\tau)}{\sqrt{1 + \mathrm{tg}^2(\omega\tau)}} \right).$$
(17)

Полагая разрядность АЦП S = 14 бит и период дискретизации $\tau = 10^{-9}$ с – постоянными, выражение (17) можно использовать как функцию расчета коэффициента ошибки измерения тока в зависимости от его частоты. При заданных постоянных значениях S и τ функция (17) определяет постоянное значение по амплитуде и зависимое от частоты ω по фазе. Вычисления производились следующим образом: величина тока, в виде комплексного числа полученная для соответствующей частоты ω умножалась на коэффициент ошибки $k_{Err}(\omega, \tau, S)\dot{I}_{1,2}(\omega)$, учитывая четыре возможных комбинации знаков в выражении (17) составлялось четыре уравнения на основе (9, 10) которые решались относительно одного выбранного параметра $R_1, R_2, R_3, L_1, C_2, L_3$, в ходе решения были вычислены четыре комплексных корня (обозначим $\tilde{x}_{k,1}, \tilde{x}_{k,2}, \tilde{x}_{k,3}, \tilde{x}_{k,4}$) вещественные части которых считались результатом решения. Из полученных решений вычислялись четыре значения относительной ошибки из которых выбиралось максимальное

$$\frac{\Delta_{k}}{\overline{x}_{k}} = \max\left(\frac{\left\|\operatorname{Re}\left(\widetilde{x}_{k,1}\right)\right| - \overline{x}_{k}\right|}{\overline{x}_{k}}, \frac{\left\|\operatorname{Re}\left(\widetilde{x}_{k,2}\right)\right| - \overline{x}_{k}\right|}{\overline{x}_{k}}, \frac{\left\|\operatorname{Re}\left(\widetilde{x}_{k,3}\right)\right| - \overline{x}_{k}\right|}{\overline{x}_{k}}, \frac{\left\|\operatorname{Re}\left(\widetilde{x}_{k,3}\right)\right| - \overline{x}_{k}\right|}{\overline{x}_{k}}\right),$$

аналогичные вычисления производились для различных частот ω . Результаты расчетов приведены на графиках (рис. 2 a, b).

Рис. 2. Зависимость относительной ошибки вычисления параметра от частоты.

Анализ полученных результатов и сопоставление графиков (рис. 1 b и рис. 2 a, b) следующие предварительные позволяет сделать выводы. Применение частот из окрестности резонансов (токов, напряжений) не может обеспечить точность решения задачи, ЧТО объясняется существенным изменением значений фазы и амплитуды при малом изменении частоты ω , т.е. плохой обусловленностью задачи, сформулированной в виде уравнений. Верхний порог частот ограничен возможностями измерительных приборов, особенностями конструктивного исполнения схемы измерений. Например, при значительный свойства достаточно высоких частотах вклад В электропроводности схемы будет вносить эффект близости, поверхностный эффект, емкость между токоведущими жилами (дорожками платы), емкость между витками катушек индуктивности, взаимная индукция и пр. Кроме того на высоких частотах более вероятно проявление нелинейных эффектов за счет диэлектрических резонансов, скорости перемагничивания в случае применения катушек с сердечником. Возможны измерения при $\omega = 0$. При выборе частот, учитывая сказанные ограничения, имеет смысл руководствоваться минимизацией числа обусловленности по (13).

6. Физическая модель

В качестве примера исследуем цепь, собранную на дискретных компонентах по следующей схеме (рис. 3 а.). Использованы следующие компоненты: резисторы типа ОМЛТ с сопротивлениями $R_1 = 172.27 \text{ Om}$, $R_2 = 168.23 \text{ Om}, R_3 = 50.89 \text{ Om};$ конденсаторы пленочные с электрической $C_1 = 823.5 \text{ н}\Phi$ и $C_3 = 165.0 \text{ н}\Phi$; катушка индуктивности емкостью $L_2 = 908.0$ мкГн. Измерение номиналов резисторов произведено с точностью $\pm 0.25\%$, а реактивных компонентов – $\pm 0.5\%$. Монтаж компонентов выполнен на макетной печатной плате. Исследования параметров производились при постоянной температуре 20 °C, с помощью воздействия на вход схемы (рис. 3 а.) синусоидальной ЭДС $\dot{E}_{1,2}(\omega)$ постоянной амплитуды 10 В и нулевой начальной фазы. За счет решения обратной задачи на основании результатов измерения ЭДС на клеммах (1, 2) и падения напряжения $\dot{U}_{R_1}(\omega)$ на R_1 при этом клемма (1) считалась общей точкой. При измерениях указанным способом фаза напряжения на R_1 была развернута относительно фазы ЭДС на π , рад, за счет подключения, что учитывалось при дальнейшем анализе. Далее в соответствии с законом Ома и с учетом разворота фазы определялся ток:

$$\dot{I}_{1,2}(\omega) = -\frac{U_{R_1}(\omega)}{R_1}$$

Измерения производились с помощью аппаратно-программного комплекса National Instruments (https://www.ni.com/) оснащенного аппаратными (PXI-5922) модулями сдвоенных ΑЦΠ И программой LabView И осциллографическим программным модулем NI-Scope. Среда визуального программирования LabView позволила автоматизировать преобразования полученных данных в удобный формат. Разрядность АЦП РХІ-5922 составляет от 16 до 24 бит, в зависимости от частоты дискретизации. При используемой частоте дискретизации 10 МГц, разрядность АЦП 18 бит. В качестве источника сигналов использовался генератор Tektronix AFG3101 с частотой следования

отсчетов 1 ГГц, частотой гармонических сигналов от 1 мГц до 100 МГц и числом разрядов по вертикали 14 бит. Величина гармонических искажений сигнала, выдаваемого генератором в области частот до 1 МГц не превышает –60 дБ.

На изображении (рис. 3 b.) приведены графики зависимости комплекснозначного тока $\dot{I}_{1,2}(\omega)$ от частоты, построены на основе численного моделирования.

Рис. 3. а. – схема моделирования; b. – комплексные составляющие тока $\dot{I}_{1,2}(\omega)$.

Общий вид схемы, собранной на макетной плате приведен на изображении (рис. 4).

Рис. 4. Внешней вид тестовой цепи.

Уравнение типа (4) для схемы (рис. 3 а) имеет вид:

$$\dot{E}_{1,2}(\omega) \frac{-C_{1}\omega\left(1+jC_{3}R_{2}\omega+jC_{3}R_{3}\omega-C_{3}L_{2}\omega^{2}\right)}{\left(j-\omega\left(C_{1}R_{1}+C_{1}R_{2}+C_{3}R_{2}+C_{3}R_{3}\right)--j\omega^{2}\left(C_{1}L_{2}+C_{3}L_{2}+C_{1}C_{3}R_{1}R_{2}+C_{1}C_{3}R_{1}R_{3}+C_{1}C_{3}R_{2}R_{3}\right)++\omega^{3}\left(C_{1}C_{3}L_{2}R_{1}+C_{1}C_{3}L_{2}R_{3}\right)}=\dot{I}_{1,2}(\omega). (18)$$

Используя выражение (18) и на основании (13) определим частоты, задающие локальные минимумы поверхности числа обусловленности $\chi(\mathbf{J})(\{\omega_d\})$, полученные результаты занесем в таблицу 2.

Неизвестные параметры схемы	Число обусловленности, $\chi(\mathbf{J})ig(ig\{arnothing_dig\}ig)$	Частота \mathcal{W}_1 , рад/с	Частота \mathcal{O}_2 , рад/с	Частота \mathcal{O}_3 , рад/с	Частота <i>Ю</i> ₄ , рад/с
R_1, R_2	3.65	5048.66	52658.68	-	_
R_1, R_3	6.71	4923.78	46888.94	—	_
R_2, R_3	2.95	3883.19	49342.70	—	_
R_1, R_2, R_3	21.86	3374.07	56840.59	28169.17	_
R_1, R_2, L_2	88534.08	6571.72	57835.78	286219.18	_
R_1, R_2, C_3	1.0779×10^{8}	1058.43	1.5998×10^{7}	4.8483×10 ⁷	
C_1, L_2, C_3	67388.83	1786.85	16461.05	249263.54	_
R_1, R_2, R_3, C_1	3.6882×10 ⁸	361.53	27218.98	128167.26	9444790.95

Таблица 2. Расчет числа обусловленности.

Используя выбранные частоты (таблица 2) приведем пример решения обратной задачи, исходные данные (рис. 4) и основные результаты сведем в таблицу 3.

	Неизвестные параметры схемы		
	R_2, R_3	R_1, R_2, R_3	C_1, L_2, C_3
		$\dot{I}_{1,2}(3374.07) =$	$\dot{I}_{1,2}(1786.85) =$
	$\dot{I}_{1,2}(3883.19) =$	= 0.0136 + j0.0149	= 0.0058 + j0.0117
Измеренный ток,	= 0.0156 + j0.0150	$\dot{I}_{1,2}(56840.59) =$	$\dot{I}_{1,2}(16461.05) =$
$I_{1,2}(\omega)$, A	$\dot{I}_{1,2}(49342.70) =$	= 0.0377 + j0.0109	= 0.0276 + j0.0107
	= 0.0354 + j0.0109	$\dot{I}_{1,2}(28169.17) =$	$\dot{I}_{1,2}(249263.54) =$
		= 0.0304 + j0.0108	= 0.0446 + j0.0037
_	r = 160.31	$x_{R1} = 182.1$	$x_{C1} = 8.271 \cdot 10^{-7}$
Вычисленные значения параметров	$x_{R2} = 100.51$	$x_{R2} = 150.26$	$x_{L2} = 0.6731 \cdot 10^{-3}$
	$x_{R3} = 45.07$	$x_{R3} = 46.26$	$x_{C3} = 1.603 \cdot 10^{-7}$
Фактическая относительная	0.047 0.102	0.057	0.0018
ошибка		0.107	0.2604
5 milliona	0.10 2	0.091	0.0315

Таблица 3. Результаты эксперимента.

r	1	1	
Оценка относительной ошибки $\frac{\ \Delta \mathbf{x}_k\ }{\ \mathbf{\bar{x}}_k\ }$ от Δh_p по (14)	0.041	0.077	67289.6
Оценка относительной ошибки $\frac{\left\ \Delta \mathbf{x}_{k}\right\ }{\left\ \bar{\mathbf{x}}_{k}\right\ } \text{ от } \Delta \dot{I}_{1,2}(\omega)$ по (15)	0.015	0.129	397.3
Оценка относительной ошибки $\frac{\left\ \Delta \mathbf{x}_{k}\right\ }{\left\ \bar{\mathbf{x}}_{k}\right\ } \text{ от } \Delta \dot{I}_{1,2}(\omega)$ по (10)	$\frac{\Delta x_{R2}}{\overline{x}_{R2}} = 0.0083$ $\frac{\Delta x_{R3}}{\overline{x}_{R3}} = 0.006$	$\frac{\Delta x_{R1}}{\bar{x}_{R1}} = 0.010$ $\frac{\Delta x_{R2}}{\bar{x}_{R2}} = 0.012$ $\frac{\Delta x_{R3}}{\bar{x}_{R3}} = 0.054$	$\frac{\Delta x_{C1}}{\overline{x}_{C1}} = 0.122$ $\frac{\Delta x_{L2}}{\overline{x}_{L2}} = 0.139$ $\frac{\Delta x_{C3}}{\overline{x}_{C3}} = 0.032$
Оценка относительной ошибки $ \frac{\left\ \Delta \mathbf{x}_{k}\right\ }{\left\ \bar{\mathbf{x}}_{k}\right\ } \text{ от } \Delta \dot{I}_{1,2}(\omega) \text{ и } \Delta h_{p} \text{ по} $ (19)	$\frac{\Delta x_{R2}}{\overline{x}_{R2}} = 0.0407$ $\frac{\Delta x_{R3}}{\overline{x}_{R3}} = 0.134$	$\frac{\Delta x_{R1}}{\overline{x}_{R1}} = 0.059$ $\frac{\Delta x_{R2}}{\overline{x}_{R2}} = 0.103$ $\frac{\Delta x_{R3}}{\overline{x}_{R3}} = 0.118$	$\frac{\Delta x_{C1}}{\overline{x}_{C1}} = 0.001$ $\frac{\Delta x_{L2}}{\overline{x}_{L2}} = 0.314$ $\frac{\Delta x_{C3}}{\overline{x}_{C3}} = 0.050$

Как известно [6] если исходные данные имеют погрешность в α -м знаке, а порядок числа обусловленности оценивается как $\chi(\mathbf{J}) \approx 10^{\beta}$, то в результатах расчета можно гарантировать не более $(\alpha - \beta)$ значащих цифр. Учитывая точность измерения номиналов компонентов схемы, ЭДС $\dot{E}_{1,2}(\omega)$ и тока $\dot{I}_{1,2}(\omega)$, и на основании данных таблиц 2, 3 можно сделать вывод о том, что точность решения может обеспечить удовлетворительный результат для одного-двух, в некоторых случаях (при малом значении числа обусловленности $\chi(\mathbf{J})$) трех неизвестных и значениях числа обусловленности не превышающего десятков.

При значениях числа обусловленности, превышающих десятки, оценки (14, 15) погрешности не работают, что вполне объяснимо свойствами производной т.к., оценки (14, 15) адекватно работают при малых приращениях аргумента и функции в окрестности точек, где функция непрерывная и гладкая. Следует отметить, что суммарный вклад в ошибку вносит погрешность измерения параметров Δh_p , $p = \overline{1, P}$, ЭДС $\Delta \dot{E}_{1,2}(\omega)$ и тока $\Delta \dot{I}_{1,2}(\omega)$, в таблице 3,

для сравнения приведены результаты фактической оценки относительной ошибки вычисленного на основе измерений параметра и четыре теоретических оценки (четыре последних строки табл. 3). Приведенные теоретические оценки величины $\frac{\|\Delta \mathbf{x}_k\|}{\|\bar{\mathbf{x}}_k\|}$ учитывают влияние возмущения отдельных параметров Δh_p , $\Delta \dot{I}_{1,2}(\omega)$ и их совокупности (последняя строка). Наиболее адекватные оценки погрешности даже при достаточно больших значениях числа обусловленности $\chi(\mathbf{J})$ получены на основе выражения:

$$\begin{cases} \dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right)G\left(\omega_{d},\left\{h_{p}+\Delta h_{p}\right\},\overline{x}_{1}+\Delta x_{1},\overline{x}_{2},...,\overline{x}_{K}\right)=\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)+\Delta\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)\\ \dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right)G\left(\omega_{d},\left\{h_{p}+\Delta h_{p}\right\},\overline{x}_{1},\overline{x}_{2}+\Delta x_{2},...,\overline{x}_{K}\right)=\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)+\Delta\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)\\ \dots\\ \dot{E}_{n_{1},n_{2}}\left(\omega_{d}\right)G\left(\omega_{d},\left\{h_{p}+\Delta h_{p}\right\},\overline{x}_{1},\overline{x}_{2},...,\overline{x}_{K}+\Delta x_{K}\right)=\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)+\Delta\dot{I}_{n_{1},n_{2}}\left(\omega_{d}\right)\\ d=\overline{1,D}\end{cases}$$

$$(19)$$

Выражение (19) позволяет учесть возмущение правой части в виде погрешности измерения тока $\Delta \dot{I}_{n_1,n_2}(\omega_d)$ и возмущение коэффициентов системы нелинейных уравнений, образованных ошибкой вычисления искомых параметров $\{x_k + \Delta x_k\}$ и ошибкой измерения значений известных параметров схемы $\{h_p + \Delta h_p\}$. Учитывая, что ошибки измерения тока $\Delta \dot{I}_{n_1,n_2}(\omega_d)$ и значений параметров $\{\Delta h_p\}$, могут иметь различные знаки, форма (19), для различных комбинаций знаков, позволяет найти различные варианты ошибок, предлагается использовать наибольшие или среднеквадратичные значения относительных ошибок. Оценка относительных ошибок рассчитанных по (19, 10) приведена в последнем столбце таблицы 3, данная оценка дает наиболее адекватное значение при сопоставлении с рассчитанными фактическими значениями относительной ошибки.

7. Обсуждение

Выполненные исследования показывают, что для получения приемлемого результата в смысле точности определения параметров элементов линейного N-полюсника по входным частотным характеристикам необходимо применять высокоточные измерительные приборы обычно доступные только В лабораторных условиях. При этом определение параметров некоторых схем затруднительно, т.к., в случаях, когда значение числа обусловленности достаточно велико, даже относительно малое возмущение измеряемых величин ошибкам. С другой приводит к значительным стороны, используя предложенные в данной работе методы анализа возможен поиск схем, имеющих топологию и содержащих компоненты, обеспечивающие хорошую устойчивость к возмущениям, полученным в результате ошибок измерения, и определение частот, способствующих повышению точности решения. Подобный поиск возможен, например, на основе методов генетических алгоритмов, что как было показано в работе [11], вполне эффективно работает применительно к задачам линейных электрических цепей.

Заключение

Выполнена разработка метода локальной минимизации числа обусловленности при решении задачи определения параметров линейного N-полюсника по входным частотным характеристикам. Исследованы оценки погрешностей вычисления параметров. Предложено выражение для оценки относительной ошибки вычисления параметров линейной электрической цепи по частотным характеристикам. Исследования снабжены примерами в виде математической модели и физического эксперимента.

Финансирование: Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, проект тематики научных исследований № 2019-0898.

Литература

- Коровкин Н. В., Миневич Т. Г., Соловьева Е. Б. Идентификация параметров схем замещения четырехполюсников по измерениям на границах их каскадного соединения // Электротехника. – 2022. – №3 – С. 2-9. https://doi.org/10.53891/00135860_2022_3_2
- Е.Б. H.B., Миневич Т.Г., Соловьева Определение 2. Коровкин электромагнитных параметров группы датчиков, предназначенных для измерений в активных средах или труднодоступных частях устройств и сооружений // Электротехника. 2023. <u>№</u>3. C. 40-44 ____ _ https://doi.org/10.53891/00135860_2023_3_40
- Бутырин П.А., Васьковская Т.А. Принципы декомпозиции сложных электрических цепей при их диагностике по частям // Электричество. 2001.
 № 6. С. 41-48.
- 4. Коровкин Н.В., Гришенцев А.Ю. Определение параметров элементов линейного N-полюсника по входным частотным характеристикам // Электричество. 2024. №6. С. 48-57. https://doi.org/10.24160/0013-5380-2024-6-48-57
- Демирчян К.С., Нейман Л.Р., Коровкин Н.В. Теоретические основы электротехники. Учебник для вузов. 5-е изд. Том 1. С-Пб.: Питер. 2021. 463 с.
- Вежбицкий В.М. Численные методы (Линейная алгебра и нелинейные уравнения). М.: Высшая школа. 2000. 266 с.
- 7. Гантмахер Ф.Р. Теория матриц. М.: Наука. 1967. 576 с.
- 8. Демидович Б.П., Марон И.А. Основы вычислительной математики.
 М.: Наука. 1970. 664 с.
- Ortega J.M., Rheinboldt W.C. Iterative solution of nonlinear equations in several variables. New York and London: Academic Press. 1970. – 500 p.
- 10. Algebraic Manipulation. Wolfram Language & System Documentation Center Date of access: 18.05.2024. URL: https://reference.wolfram.com/language/tutorial

 Потиенко А.А. Параметрический синтез и оптимизация формирующих линий и трехфазных кабелей с помощью генетического алгоритма. Диссертация на соискание степени к.т.н. С-Пб.: СПбПУ Петра Великого. – 2004. – 128 с.

Для цитирования:

Коровкин Н.В., Гришенцев А.Ю., Миневич Т.Г. Исследование обусловленности задачи определения параметров линейного N-полюсника по входным частотным характеристикам // Журнал радиоэлектроники. – 2024. – №. 10. https://doi.org/10.30898/1684-1719.2024.10.12