Journal of Radio Electronics. eISSN 1684-1719. 2024. №10

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.10.8

 

 

STUDY OF PIEZOELECTRIC PROPERTIES

OF ALUMINUM NITRIDE FILMS

FORMED ON ALUMINUM AND MOLYBDENUM LAYERS

FOR CREATION OF MICROELECTRONIC FBAR

 

А.Yu. Kuklev 1, 2, 3, V.I. Strunin 1, 3, L.V. Baranova 1, 3, N.A. Davletkildeev 1, 3, N.A. Chirikov1, 2

 

1Omsk Scientific Center SB RAS (Institute of Radiophysics and Physical Electronics)

644024, Omsk, pr. Karla Marksa, 15

2 Omsk Scientific-Research Institute of Instrument Engineering

644071, Omsk, Maslennikova, 231

3 Dostoevsky Omsk State University

644077, Omsk, pr. Mira, 55-A

 

The paper was received October 22, 2024.

 

Abstract. The paper presents the results of AFM measurements of piezomodulus d33 in aluminum nitride films obtained by vacuum magnetron sputtering in a reactive gas atmosphere of argon and nitrogen. Dependences of piezomodule d33 on technological parameters are presented of sputtering AlN films, such as substrate temperature, magnetron discharge power, and the Ar/N2 ratio. Based on the analysis of the obtained data, the optimal technological modes of formation of aluminum nitride films have been determined aluminum nitride films for the formation of the piezoelectric layer of the FBAR.

Key words: magnetron sputtering, aluminum nitride, FBAB, piezomodule d33, thin films.

Financing: The research was realized with the support of the grant of the Russian Science Foundation (project No. 23-12-20010).

Corresponding author: Kuklev Alexander Yurievich, alexanderkuklev@mail.ru

 

References

1. Фещенко В.С., Зяблюк К.Н., Сенокосов Э.А., Чукита В.И., Киселев Д.А. Особенности получения пьезоэлектрических тонких пленок методом плазменного напыления из порошкообразного AlN. Российский технологический журнал. 2020;8(1):67-79. https://doi.org/10.32362/2500-316X-2020-8-1-67-79

2. Получение и исследование тонких пленок нитрида алюминия-скандия в составе пьезоэлектрических слоистых структур с подложками из синтетического монокристалла алмаза // Н.В. Лупарев, Б.П. Сорокин, В.В. Аксененков // Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 12,
с. 77–84. https://doi.org/10.6060/ivkkt.20206312.6312.

3. Козлов А.Г., Торгаш Т.Н. Характеристики микроэлектронного ОАВ-резонатора с пьезоэлектрическим слоем из нитрида алюминия, с электродамии акустическим отражателем на основе пленок алюминия и молибдена // Техника радиосвязи. 2022. Выпуск 3 (54). С. 123–136.

4. Давлеткильдеев Н.А., Мосур Е.Ю., Никифорова А.О. Изучение пьезоэлектрических свойств ниобата лития методом сканирующей силовой микроскопии пьезоотклика // Техника радиосвязи. 2022. Выпуск 4 (55).
С. 83–90.

5. Wang F., Xiao F., Song D., Qian L., Feng Y., Fu B., … Zhang K. (2018). Research of micro area piezoelectric properties of AlN films and fabrication of high frequency SAW devices. Microelectronic Engineering, 199, 63–68. https://doi.org/10.1016/j.mee.2018.07.016

6. Nguyen T., Adjeroud N., Glinsek S., Fleming Y., Guillot J., Grysan P., & Polesel-Maris J. (2020). A film-texture driven piezoelectricity of AlN thin films grown at low temperatures by plasma-enhanced atomic layer deposition. APL Materials, 8(7), 071101. https://doi.org/10.1063/5.0011331

7. Fang L., Jiang Y., Zhu S., Ding J., Zhang D., Yin,A., & Chen P. (2018). Substrate Temperature Dependent Properties of Sputtered AlN: Thin Film for In-Situ Luminescence Sensing of Al/AlN Multilayer Coating Health. Materials, 11(11), 2196. https://doi.org/10.3390/ma11112196

8. Yang J., Jiao X. Zhang R., Zhong H., Shi Y., Du B. Growth of AlN films as a function of temperature on Mo films deposited by different techniques. J. Electron. Mater. 2014, 43, 369–374. https://doi.org/10.1007/s11664-013-2867-6

9. Iqbal A., & Mohd-Yasin F. (2018). Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review. Sensors, 18(6), 1797. https://doi.org/10.3390/s18061797

10. Liu H.Y., Tang G.S., Zeng F., & Pan F. (2013). Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature. Journal of Crystal Growth, 363, 80–85. https://doi.org/10.1016/j.jcrysgro.2012.10.00

11. Takeuchi H., Ohtsuka M., & Fukuyama H. (2015). Effect of sputtering power on surface characteristics and crystal quality of AlN films deposited by pulsed DC reactive sputtering. Physica Status Solidi (b), 252(5), 1163–1171. https://doi.org/10.1002/pssb.201451599

12. Iqbal A., Walker G., Iacopi A., Mohd-Yasin F. Controlled sputtering of AlN (002) and (101) crystal orientations on epitaxial 3C-SiC-on-Si (100) substrate. J. Cryst. Growth 2016, 440, 76–80. https://doi.org/10.1016/j.jcrysgro.2016.01.037

13. Mironova M.I., Kapishnikov A.V., Hamoud G.A., Volodin V.A., Azarov I.A., Yushkov I.D., Kamaev G.N., Suprun E.A., Chirikov N.A., Davletkildeev N.A., et al. Characterization of Structure, Morphology, Optical and Electrical Properties of AlN–Al–V Multilayer Thin Films Fabricated by Reactive DC Magnetron Sputtering. Coatings 2023, 13, 223. https://doi.org/10.3390/coatings13020223.

14. Лузанов В.А. Особенности формирования наклонной текстуры в пленках нитрида алюминия. РАДИОТЕХНИКА И ЭЛЕКТРОНИКА, 2017, том 62, № 10, с. 1018–1020.

 

For citation:

Kuklev А.Yu., Strunin V.I., Baranova L.V., Davletkildeev N.A., Chirikov N.A. Study of piezoelectric properties of aluminum nitride films formed on aluminum and molybdenum layers for creation of microelectronic FBAR // Journal of Radio Electronics. – 2024. – №. 10. https://doi.org/10.30898/1684-1719.2024.10.8 (In Russian)