

DOI: https://doi.org/10.30898/1684-1719.2025.10.4

УДК: 53.083.2; 53.082.73; 534.13

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДИСКОВЫХ ПЛЕНОЧНЫХ ПЬЕЗОЭЛЕКТРИЧЕСКИХ АКТЮАТОРОВ СО ВСТРЕЧНО-ГРЕБЕНЧАТЫМИ ЭЛЕКТРОДАМИ

А.А. Паньков

Пермский национальный исследовательский политехнический университет, 614990, Пермь, Комсомольский пр-кт, д. 29

Статья поступила в редакцию 15 июля 2025 г.

Аннотация. Представлена принципиальная схема и разработана электро-механическая математическая модель функционирования пленочных пьезоэлектрических, в частности: дуго-гребенчатого (ArcCD) и хордо-гребенчатого (ChordCD) дисковых актюаторов с двумя взаимодействующими подсистемами встречно-гребенчатых «древовидных» электродов, установленными на верхней и/или нижней поверхностях тонкого пьезоэлектрического слоя. В общем случае, криволинейные «ветви» обеих подсистем сопряжены между собой по типу встречно-гребенчатых известного пьезоэлектрического MFC-актюатора. электродов, например, Неоднородная взаимообратная поляризация пьезоэлектрического слоя между взаимодействующими ветвями электродов осуществляется в результате подключения поляризующего значения электрического напряжения к выходам двух подсистем электродов. Результаты численного моделирования получены для круглой упругой мембраны с установленными по схеме «биморф» на ее верхней и нижней поверхностях пьезоэлектрическими пленочными ArcCD-актюаторами. Выявлено значительное увеличение прогиба мембраны с установленными ArcCD-актюаторами по сравнению с традиционными

пьезоэлектрическими биморфами для случаев шарнирного закрепления мембраны по круговому периметру или жесткого закрепления по центру. Результаты модального анализа представлены найденными численными значениями первых шести собственных (резонансных) частот и геометрических форм колебаний круглой мембраны с установленными ArcCD-актюаторами.

Ключевые слова: МFС-актюатор, IDE-электроды, биморф, изгиб мембраны, численное моделирование.

Финансирование: Результаты получены при выполнении государственного задания Министерства науки и высшего образования Российской Федерации на выполнение фундаментальных научных исследований (проект № FSNM-2023-0006).

Автор для переписки: Паньков Андрей Анатольевич, a_a_pankov@mail.ru

Введение

Встречно-гребенчатые (IDE) электроды являются одними из наиболее часто используемых структур периодических электродов и широко используются в таких областях, как неразрушающий контроль, микроэлектромеханические системы, сенсорная техника (например, в датчиках поверхностных акустических волн, химических датчиках и биосенсорах), телекоммуникации, химическое зондирование, пьезоакустика и биотехнология из-за их низкой стоимости, простоты процесса изготовления и отличной чувствительности таких электродов. IDE-электроды эффективно используются в пьезоэлектрических гибких пленочных микро-волоконных композитных МFС-актюаторах [1] – электро-механических преобразователях толщиной ≈ 0.3 мм, в ячейке периодичности которых расстояние ≈ 0.5 мм между парой разнонаправленных штыревых электродов [2,3]. МГС-актюаторы эффективно используются, например, в авиационной технике для гашения вибраций и шумогашения посредством управления геометрией лопастей вертолета [4], что обуславливает актуальность решения задач импортозамещения известных МГС-актюаторов, улучшения и расширения их возможностей, например, функциональных посредством использования

(наклеивания на аэродинамическую поверхность) оптимальных сочетаний пьезоэлектрических ячеек [5] в виде тонких пластинчатых IncIDE-актюаторов [6], в частности, с одинаковой тетрагональной формой и вариативным наклоном однонаправленных штыревых IDE-электродов к основаниям различных ячеек.

1. «Древовидные» IDE-электроды дисковых актюаторов.

В предложенных пьезоэлектрических актюаторах [7] используются «древовидные» IDE-электроды в виде двух эквипотенциальных геометрически подобных подсистем электродов, установленных, в общем, на криволинейный пьезоэлектрический слой или оболочку. Каждая подсистема электродов включает в себя управляющий базовый электрод с отходящими от него в виде «ветвей» вспомогательные электроды, взаимодействующие с сопряженными вписанными в промежутки между ними без наличия непосредственного электрического контакта) вспомогательными электродами (ветвями) другой подсистемы. Неоднородная взаимообратная поляризация локальных участков пьезоэлектрического слоя обуславливается особенностями геометрической формы «ветвей» электродов. Примеры дисковых шестисекторного дуго-гребенчатого (ArcCD) и хордо-гребенчатого (ChordCD) актюаторов с «древовидными» IDE-электродами даны на рис. 1, где управляющее электрическое напряжение U_{con} прикладывается к выходам (\bullet) базовых электродов. Многосекторный дуго-гребенчатый дисковый ArcCD-актюатор [7] (рис. 1a), в общем, с независимым управлением и функционированием секторов предложен в развитие инновационного дискового (Membrane Double Spiral) MDS-актюатора [8] с взаимодействующими электродами в виде двухзаходной спирали. Отметим, что перспективность и функциональные возможности MDS-актюатора подтверждены также другими авторами [9]. Наличие в ArcCD-актюаторе независимо функционирующих секторов, где каждый сектор со своим управляющим электрическим напряжением $U_{(1)\text{con}}, \ldots, U_{(6)\text{con}}$ позволяет расширить спектр возможностей и, как следствие, область использования ArcCD-актюатора. Пьезоэлектрический MDS-актюатор [8] можно рассматривать

как частный случай ArcCD-актюатора (рис.1, а) [7] при синхронной работе всех секторов, т.е. при выполнении равенства $U_{(k)\text{con}} = U_{\text{con}}, k = 1,...,6$. На рис. 2 даны расположения электродов и взаимообратные направления поляризаций $\pm \mathbf{p}$ чередующихся локальных участков пьезоэлектрического слоя. На рис. 3 представлен вид ячейки периодичности ArcCD-актюатора в цилиндрической системе координат ρ, ϕ, z , где ρ – радиальная ось соответствует направлениям взаимообратных поляризаций локальных участков пьезоэлектрического слоя актюатора. ArcCD- и ChordCD-актюаторы (рис. 1) могут быть применены, например, для параболического или цилиндрического изгибов закрепленных по центру упругих круглых мембран соответственно.

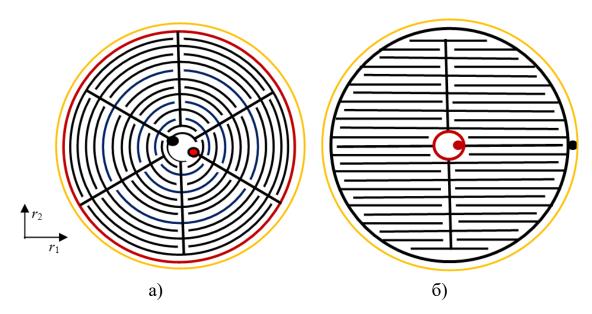


Рис. 1. Системы взаимодействующих электродов шестисекторного дуго-гребенчатого (ArcCD) (а) и хордо-гребенчатого (ChordCD) (б) дисковых актюаторов [7], где (\bullet) – выходы базовых электродов.

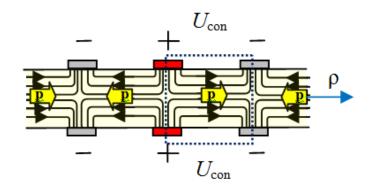


Рис. 2. Расположения электродов и взаимообратные направления поляризаций $\pm \mathbf{p}$ пьезоэлектрического слоя ArcCD-актюатора.

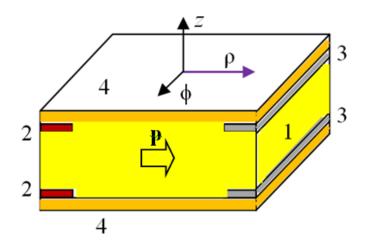


Рис. 3. Ячейка периодичности ArcCD-актюатора, где 1 – пьезоэлектрик, 2, 3 – IDE-электроды, 4 – полиамидная (каптон) пленка.

2. Результаты численного моделирования.

Рассмотрим деформирование упругой круглой мембраны под воздействием присоединенных к ней по типу «биморф» двух ArcCD-актюаторов (рис. 1a, рис. 4). Считаем, что мембрана закреплена по-своему внешнему круговому периметру (рис. 4а) или в центре (рис. 4б) при синхронной работе всех шести секторов каждого ArcCD-актюатора, т.е. при одинаковых значениях управляющих электрических напряжений $U_{(k)\text{con}} = U_{\text{con}}$ на всех шести секторах, (рис. 1a) k = 1, ..., 6. Между соседними дуговыми IDE-электродами ArcCD-актю атора расстояние $\Delta_{\rm e} \approx 0.5$ мм и заданы управляющие электрические напряжения верхнего (U_{con1}) нижнего (U_{con2}) актюаторов И co значениями $U_{\text{con2}} = -U_{\text{con1}} = 1000 \text{ B},$ обуславливает осесимметричный изгиб ЧТО результирующую выпуклую форму мембраны. Геометрические характеристики мембраны заданы значениями радиуса R = 6 см и толщины h = 0.2 мм, изотропные упругие свойства - модулем Юнга 20 ГПа и коэффициентом Пуассона 0.3 материала. ArcCD-актюатор моделируем однородным радиально поляризованным диском (PZT-5) с радиусом мембраны R и толщиной $h_a = 0.3$ мм. В гомогенизированной расчетной схеме ArcCD-актюатора «приведенные» электроды: жила и круговой электрод расположены соответственно по центру и круговому периметру диска, между которыми задавалось приведенное значение U^*_{con} разности электрических потенциалов, рассчитываемое как

произведение $U_{\rm con}$ на число N элементарных ячеек с характерным размером $\Delta_{\rm e}$ вдоль радиуса R мембраны.

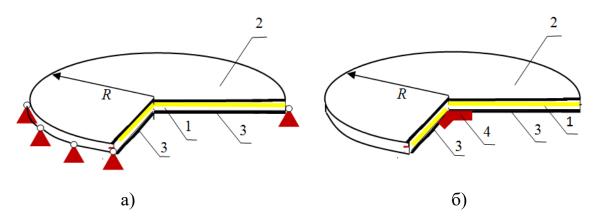


Рис.4. Схемы закрепления: по внешнему периметру (а) и в центре (б) круглой трехслойной пластины, где 1 — упругая мембрана, 2, 3 — верхний и нижний слои ArcCD-актюатора (биморфа изгиба).

Результаты вычисления прогибов w мембран с установленными по схеме «биморф» новыми (ArcCD) и традиционными пленочными пьезоэлектрическими актюаторами даны на рис. 5 при закреплении внешнего периметра мембраны (рис. 4а). Для этого случая закрепления мембраны (рис. 4а) имеем (рис. 5, табл. 1) значения 0.489 мм, 0.004 мм прогиба w_0 ее центра при использовании нового и традиционного пьезоэлектрических актюаторов соответственно. Первые шесть форм колебаний упругой круглой мембраны с установленными на ее верхней и нижней поверхностях пленочными ArcCD-актюаторами даны на рис. 6, рис. 7 для случаев закрепления ее внешнего периметра (рис. 6) или центра (рис. 7); соответствующие численные значения первых шести собственных частот колебаний мембраны даны в табл. 2.

Таблица 1. Прогиб w_b центра круглой мембраны, закрепленной по внешнему периметру.

Вид актюатора	w_b , MM		
ArcCD	0.456		
Традиционный	0.009		

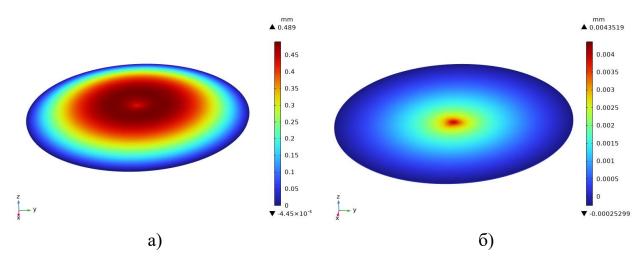


Рис. 5. Эпюры изгибных перемещений мембран с установленными по схеме «биморф» новыми (а) и традиционными (б) пленочными пьезоэлектрическими актюаторами при закреплении внешнего периметра.

Таблица 2. Первые шесть собственных частот колебаний мембраны

Вид закрепления мембраны	Собственные частоты, Гц						
	1	2	3	4	5	6	
по внешнему периметру	8270	23990	42946	59576	65676	92262	
по центру	6209	18016	31378	43118	47757	67062	

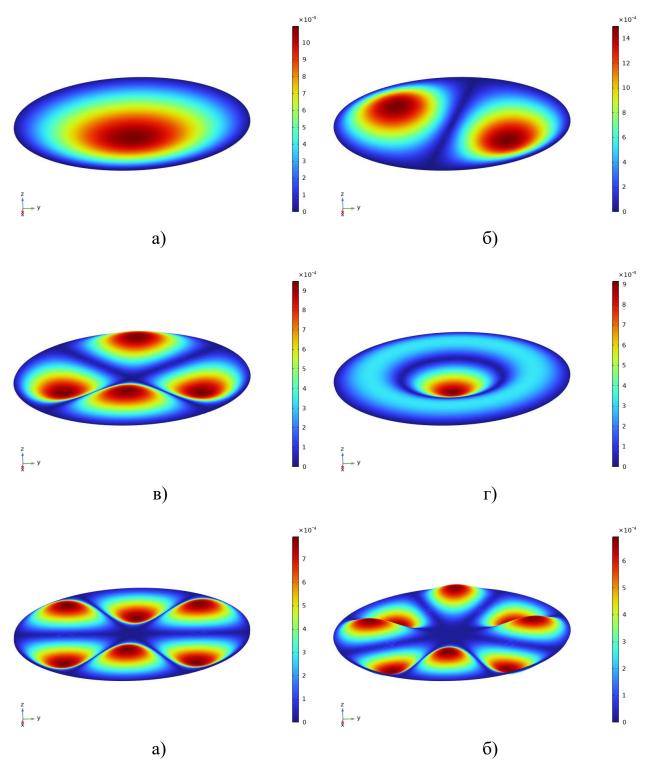


Рис. 6. Первые шесть форм колебаний мембраны при закреплении ее внешнего периметра.

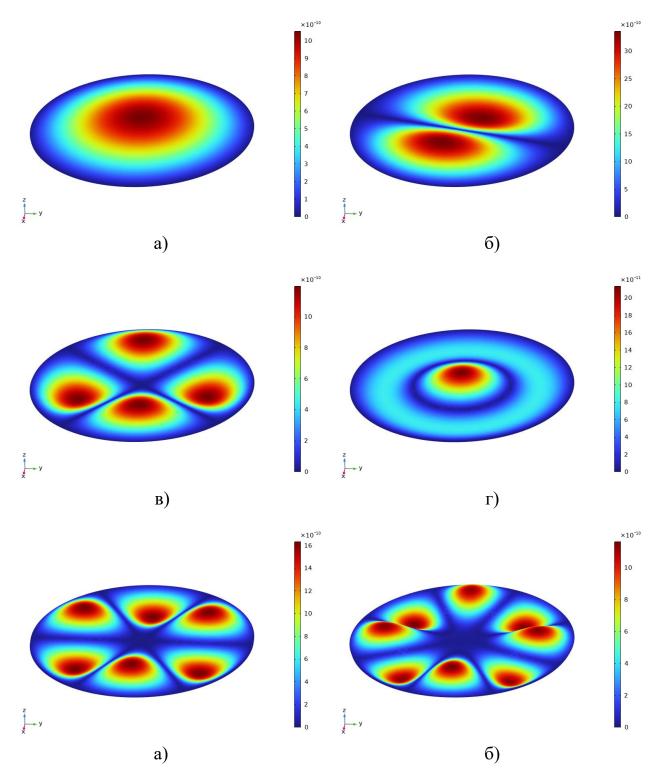


Рис. 7. Первые шесть форм колебаний мембраны при закреплении ее центра.

Заключение

Результаты численного моделирования (рис. 5, табл. 1) деформирования круглой упругой мембраны (рис. 4) под действием установленных на ее верхней и нижней поверхностях по типу «биморф» новых пленочных пьезоэлектрических

АгсСD-актюаторов [7] (рис. 1а) с «древовидными» IDE-электродами подтвердили существенное увеличение результирующего прогиба мембраны по сравнению с использованием известных пьезоэлектрических биморфов. Представлены результаты модального анализа в виде найденных первых шести собственных частот (табл. 2) и форм (рис. 6, рис. 7) колебаний мембраны с установленными АгсСD-актюаторами. Исследование выполнено для различных случаев закрепления: шарнирного закрепления по круговому периметру или жесткого закрепления по центру мембраны. Разрабатываемые дуго-гребенчатый (ArcCD) (рис. 1а) и хордо-гребенчатый (ChordCD) (рис. 1б) дисковые актюаторы [7] могут быть использованы в качестве функциональных элементов манипуляторов микроперемещений [9], излучателей и/или приемников акустических сигналов, в частности, при гидролокации, геологоразведке и подводных коммуникациях [10].

Финансирование: Результаты получены при выполнении государственного задания Министерства науки и высшего образования Российской Федерации на выполнение фундаментальных научных исследований (проект № FSNM-2023-0006).

Литература

- 1. Patent US 2003/0056351 A1. Wilkie W.K., et al. *Piezoelectric Macro-Fiber Composite Actuator and Method for Making Same*. Publication Date: 27.03.2003.
- 2. Emad D, Fanni MA, Mohamed AM, Yoshida S. Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method. *Materials* (*Basel*). 2021. № 14(15). P. 4316. https://doi.org/10.3390/ma14154316
- 3. Park J.-S., Kim J.-H. Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades. *Smart Mater. Struct.* 2005. № 14. P. 745–753. https://doi.org/10.1088/0964-1726/14/4/033
- 4. Zhou J., Dong L., Yang W. A Double-Acting Piezoelectric actuator for helicopter active rotor. *Actuators*. 2021. V. 247. № 10. P. 1-15. https://doi.org/10.3390/act10100247

- Латент RU № 2841110. Паньков А.А. Лопасть воздушного винта с управляемой геометрией аэродинамической поверхности. Дата заявки: 26.12.2024. Дата публикации: 02.06.2025.
- Патент RU № 2811420. Паньков А.А. Способ изготовления пьезоэлектрического актюатора. Дата заявки: 24.10.2023. Дата публикации: 11.01.2024.
- 7. Патент RU № 2818079. Паньков А.А. *Пьезоэлектрический актюатор*. Дата заявки: 22.09.2023. Дата публикации: 24.04.2024.
- 8. Патент RU № 2803015. Паньков А.А. *Пьезоэлектрический MDS-актюатор*. Дата заявки: 11.04.2023. Дата публикации: 05.09.2023.
- 9. Wang Y., Ren T., Ren Y., Gu R., Liu Y. Analysis of the Radial Force of a Piezoelectric Actuator with Interdigitated Spiral Electrodes. *Micromachines*. 2024. № 15. P.1378. https://doi.org/10.3390/mi15111378
- 10. Попов И.А., Лукин А.В., Пискун Н.В. Компактная аналитическая модель электродинамического импульсного дискового излучателя. Вестник Пермского национального исследовательского политехнического **№** 1. Механика. 2024. C. 96-104. университета. https://doi.org/10.15593/perm.mech/2024.1.08

Для цитирования:

Паньков А.А. Численное моделирование дисковых пленочных пьезоэлектрических актюаторов со встречно-гребенчатыми электродами. // Журнал радиоэлектроники. -2025. − №. 10. https://doi.org/10.30898/1684-1719.2025.10.4