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Abstract. To the best our knowledge, this work is the first attempt of extraction of
MOSFET parameters in the uniform (Chebyshev) approximation. The proposed
optimization algorithm uses random descent with a random number generator whose
probability density is best suited for the ravine structure of the objective function in
such a way as to obtain a compromise between the probability of a successful attempt
and the magnitude of the descent step. The proposed distribution reduces the descent
time by two orders of magnitude compared to the uniform one. By replacing the root-
mean-square approximation with a uniform one, the maximum error of the model can
be significantly reduced, which improves the accuracy of the worst-case analysis of
electronic circuits.
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Introduction

The last stage of the analysis of electronic devices in practice is always the
worst-case analysis [1]. The key role in such an analysis is played by the
correspondence of transistor models and experimental characteristics. To analyze
such a relationship, a statistical analysis of the parameters of the required type of
transistor is carried out, as a result of which the manufacturing variations in
parameters is defined, allowing the analysis of the circuit by the Monte Carlo method.

Extraction of transistor parameters is currently carried out, as a rule, by the
least squares method, which guarantees a minimum mean square error of the model,
but does not guarantee a minimum of maximum error. With parameters obtained by
the least squares method, the maximum error of the model exceeds the root mean
square by up to 3 times [2], that is, the estimate of the actual maximum error in this
case turns out to be greatly overestimated. The actual maximum model error in the
uniform approximation is not always slightly larger than the mean square error. There
is always a possibility that the model whose parameters are extracted by least squares
has a maximum error twice as large as the model whose parameters are determined
by optimization in the uniform approximation.

There are three reasons why uniform approximation is not used in parametric
optimization in practice. First, replacing the «small» mean square error with a «large»
maximum error is “unpleasant” [3]. Second, the results obtained with uniform
approximation are much more sensitive to the error and the number of measurements
of the device characteristics than those obtained by the least squares method. Third,
and most importantly, in uniform approximation the objective function is non-
differentiable, and the zero-order methods used, which do not determine the
derivatives of the objective function, are extremely slow: the number of evaluations
of the objective function can reach 10 ** [4].

Manufacturing parameter deviations are measured on a sample of hundreds of
devices, i.e. the parameter extraction procedure is repeated many times. In addition,
manufacturing sometimes involves continuous testing, so fast gradient least squares
optimization methods are used despite their high maximum error.
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When optimizing for any criterion, it is necessary to take into account that the
objective function usually has a ravine structure and is called a valley function [5].
Then in any method the descent from the starting point initially occurs quickly along
the steep sides of the ravine, and then passes slowly along the gently sloping bottom.
In such a problem, small changes in the objective function at the bottom of the ravine
correspond to large changes in some parameters, which lead to uncertainty in the
choice of the stopping criterion. In this case, the error estimate of nonlinear least
squares remains insufficiently reliable [6], which is also true for uniform
approximation.

An empirical method for accelerating random descent for problems with a
ravine structure of the objective function is known, which consists in decreasing the
interval of change of random parameters as the descent proceeds [7]. In this paper,
it is proposed to use a special law of distribution of random parameters for the same
purpose, which does not require the selection of empirical constants dependent on the

type of ravine structure and the initial conditions of the descent.

1. Random optimization algorithm

The basic random optimization sequential algorithm for any objective function

Q(X) can be described as:

Initialize x with a random position in the search-space.

e Until a number of iterations performed, repeat the following:

ee Sample a new position y by adding a random vector to the current position x.
ee If Q(y) < Q(x) then move to the new position by setting x =y.

eNow X holds the best-found position.

In the simplest case, each element of the vector y is selected on the interval
(X —AW/2, X + AWl2), where Ay is the width of the interval, and on this interval yy is a

random variable with some distribution. Conflicting requirements are imposed on the
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width of the search interval. On the one hand, to increase the descent step, interval
must be increased, and to increase the probability of successful yy, in the bottom of
ravine it must be reduced. This contradiction is most acute in problems of high

dimension of the objective function and/or poor conditionality of the Hessian matrix
2. Selection of the distribution law of random parameters

In Fig. 1, the polygons show the level surfaces of the two-dimensional ravine
objective function and the squares in which the trial parameters are randomly
assigned during the descent.

The probability of a successful attempt is determined by the ratio of the area of
the figure, limited by the perimeter of the square and the part of the square located
below the level passing through the center of the square to the area of the square.
When descending the slope of a ravine, regardless of the size of the square, this
probability is constant and equal to 0.5. In this case, it is obviously advantageous to

increase the size of the square, since this increases the step of the descent.

Fig. 1. Level surfaces of a two-dimensional ravine objective function in uniform
approximation. The squares correspond to possible regions of random parameters
during descent: on the left at the slope of the ravine, and on the right at the bottom

of the ravine.

At the bottom of the ravine, as follows from Fig. 1, the probability of a
successful attempt depending on the size of the square has a more complex nature.
If the size of the square is reduced to less than the size of the side of the polygon of
the nearest level surface, then the probability of a successful attempt changes slightly,

but the solution step decreases. If the side of the square is increased above the same
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side of the polygon, then the probability of a successful attempt drops sharply. Thus,
at each point on the bottom of the ravine, the size of the square is optimal if it
coincides with the nearest smallest side of the level surface, that is, as you move
along the bottom, the square should decrease.

In work [7], it is proposed to reduce the region of admissible values of random
parameters during the descent according to some empirical law, but the efficiency of
such a method depends on both the type of the objective function and the initial
approximation.

The above contradiction can be partially removed by choosing a rapidly
changing distribution function of the random variable y, that has maximum near x

and minimum at the boundaries of the interval Ay. Here yy is random variable with the
uniform cubic distribution f,(x) =1/(6x*®) [8]. Each value of the uniform cubic

distribution corresponds to a cube of uniform distribution in the interval [-1, 1]. Fig 2
shows the main feature of probability density function of cubic uniform distribution

as lim f,(x) =co. This property allows for efficient random descent both down a slope

x—0

and along the entire bottom of a ravine. A normally distributed random vector gives

much less efficiency.

1.5

Fig. 2. Probability density function. The solid and dotted lines show the uniform
distribution and cubic uniform distribution, respectively.
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3. MOSFET model

To demonstrate the properties of the random descent method, the MOSFET
model from [9] was chosen as
0; Vs <Vos
v \fv:svfs\/;viHvDs j; Voo <Var:
V, +Vge — Vi, (1)
Ve +Vg — Vo, —VSTJ

ﬂVK [VDS _VK In

ﬂVK [VST _VK In

(Lt a(Vps —Vsr) ; V.. >V,
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where Ip is a drain current; Vgs and Vps are gate-source, drain-source voltages,
respectively; Vry denotes a threshold voltage; g is an intrinsic transconductance
parameter; Vi is transverse electric field parameter; Vsr=k(Ves — Vry) IS a drain
saturation voltage; k is empirical constant (0 <k<1). Constants a and b are

expressed explicitly from the conditions of continuity of the current and its first and
second derivatives at V; =V, as
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4. Random descent with different distributions of random parameters
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Fig. 3 shows the sequence of maximum error of model (1) along the descent
for uniform and cubic uniform distribution of parameters and Ax=0.05 xx for GaN
MOSFET GS66508B [10].
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Fig. 3. Maximum error versus the number of function evaluations. (a) Uniform
distribution. (b) Cubic uniform distribution.

Since the graphs are random, their families are shown to improve reliability.
The initial values of the parameters were obtained by least squares with a root mean
square error of 2.5%. With uniform approximation, the RMS error increases to
3.5 %. The transition to a cubic uniform distribution reduces the number of objective
function estimates in the case under consideration by two orders of magnitude.

Note that the cubic uniform distribution accelerates the descent significantly
only at the bottom of the ravine. Thus, this distribution allows us to obtain not so
much a more accurate value of the minimum of the objective function, but to refine
the determined parameters of the model and make the criterion for stopping the
descent more reliable.

Above, we used the Ly,-norm for p = 2 for initial guess. Using the Ly,-norm for
p > 2 allows us to obtain initials at lower values of |5|uax. However, as p increases,
the conditionality of the Hessian matrix decreases, so the maximum achievable value
of p is low [11]. For various models and transistors, it has been experimentally
established that 4 < pwax < 32. With increasing p, |0|uax decreases monotonically,
but some model parameters decrease non-monotonically, so a limited increase in p

has little effect on the duration of random descent.
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Conclusion

The proposed method allows obtaining the exact minimum maximum error of
the transistor model is simple and does not require complex subroutines. We expect
that if there is a solution for the least squares method, then it also exists for the
uniform approximation. The method does not introduce additional empirical

coefficients, and can be used with any other methods of accelerating random descent.
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