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Abstract. To the best our knowledge, this work is the first attempt of extraction of 

MOSFET parameters in the uniform (Chebyshev) approximation. The proposed 

optimization algorithm uses random descent with a random number generator whose 

probability density is best suited for the ravine structure of the objective function in 

such a way as to obtain a compromise between the probability of a successful attempt 

and the magnitude of the descent step. The proposed distribution reduces the descent 

time by two orders of magnitude compared to the uniform one. By replacing the root-

mean-square approximation with a uniform one, the maximum error of the model can 

be significantly reduced, which improves the accuracy of the worst-case analysis of 

electronic circuits. 
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Introduction 

The last stage of the analysis of electronic devices in practice is always the 

worst-case analysis [1]. The key role in such an analysis is played by the 

correspondence of transistor models and experimental characteristics. To analyze 

such a relationship, a statistical analysis of the parameters of the required type of 

transistor is carried out, as a result of which the manufacturing variations in 

parameters is defined, allowing the analysis of the circuit by the Monte Carlo method. 

Extraction of transistor parameters is currently carried out, as a rule, by the 

least squares method, which guarantees a minimum mean square error of the model, 

but does not guarantee a minimum of maximum error. With parameters obtained by 

the least squares method, the maximum error of the model exceeds the root mean 

square by up to 3 times [2], that is, the estimate of the actual maximum error in this 

case turns out to be greatly overestimated. The actual maximum model error in the 

uniform approximation is not always slightly larger than the mean square error. There 

is always a possibility that the model whose parameters are extracted by least squares 

has a maximum error twice as large as the model whose parameters are determined 

by optimization in the uniform approximation. 

There are three reasons why uniform approximation is not used in parametric 

optimization in practice. First, replacing the «small» mean square error with a «large» 

maximum error is “unpleasant” [3]. Second, the results obtained with uniform 

approximation are much more sensitive to the error and the number of measurements 

of the device characteristics than those obtained by the least squares method. Third, 

and most importantly, in uniform approximation the objective function is non-

differentiable, and the zero-order methods used, which do not determine the 

derivatives of the objective function, are extremely slow: the number of evaluations 

of the objective function can reach 10 11 [4]. 

Manufacturing parameter deviations are measured on a sample of hundreds of 

devices, i.e. the parameter extraction procedure is repeated many times. In addition, 

manufacturing sometimes involves continuous testing, so fast gradient least squares 

optimization methods are used despite their high maximum error. 
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When optimizing for any criterion, it is necessary to take into account that the 

objective function usually has a ravine structure and is called a valley function [5]. 

Then in any method the descent from the starting point initially occurs quickly along 

the steep sides of the ravine, and then passes slowly along the gently sloping bottom. 

In such a problem, small changes in the objective function at the bottom of the ravine 

correspond to large changes in some parameters, which lead to uncertainty in the 

choice of the stopping criterion. In this case, the error estimate of nonlinear least 

squares remains insufficiently reliable [6], which is also true for uniform 

approximation. 

An empirical method for accelerating random descent for problems with a 

ravine structure of the objective function is known, which consists in decreasing the 

interval of change of random parameters as the descent proceeds [7]. In this paper,  

it is proposed to use a special law of distribution of random parameters for the same 

purpose, which does not require the selection of empirical constants dependent on the 

type of ravine structure and the initial conditions of the descent. 

 

1. Random optimization algorithm 

The basic random optimization sequential algorithm for any objective function 

Q(x) can be described as: 

______________________________________________________________ 

Initialize x with a random position in the search-space. 

● Until a number of iterations performed, repeat the following: 

●● Sample a new position y by adding a random vector to the current position x. 

●● If Q(y) < Q(x) then move to the new position by setting x = y. 

●Now x holds the best-found position. 

______________________________________________________________ 

In the simplest case, each element of the vector yk is selected on the interval  

(xk –Δk/2, xk + Δk/2), where Δk is the width of the interval, and on this interval yk is a 

random variable with some distribution. Conflicting requirements are imposed on the 
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width of the search interval. On the one hand, to increase the descent step, interval 

must be increased, and to increase the probability of successful yk, in the bottom of 

ravine it must be reduced. This contradiction is most acute in problems of high 

dimension of the objective function and/or poor conditionality of the Hessian matrix 

2. Selection of the distribution law of random parameters 

In Fig. 1, the polygons show the level surfaces of the two-dimensional ravine 

objective function and the squares in which the trial parameters are randomly 

assigned during the descent. 

The probability of a successful attempt is determined by the ratio of the area of 

the figure, limited by the perimeter of the square and the part of the square located 

below the level passing through the center of the square to the area of the square. 

When descending the slope of a ravine, regardless of the size of the square, this 

probability is constant and equal to 0.5. In this case, it is obviously advantageous to 

increase the size of the square, since this increases the step of the descent. 

x1

x
2

 

Fig. 1. Level surfaces of a two-dimensional ravine objective function in uniform 

approximation. The squares correspond to possible regions of random parameters 

during descent: on the left at the slope of the ravine, and on the right at the bottom 

of the ravine. 

At the bottom of the ravine, as follows from Fig. 1, the probability of a 

successful attempt depending on the size of the square has a more complex nature.  

If the size of the square is reduced to less than the size of the side of the polygon of 

the nearest level surface, then the probability of a successful attempt changes slightly, 

but the solution step decreases. If the side of the square is increased above the same 
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side of the polygon, then the probability of a successful attempt drops sharply. Thus,  

at each point on the bottom of the ravine, the size of the square is optimal if it 

coincides with the nearest smallest side of the level surface, that is, as you move 

along the bottom, the square should decrease. 

In work [7], it is proposed to reduce the region of admissible values of random 

parameters during the descent according to some empirical law, but the efficiency of 

such a method depends on both the type of the objective function and the initial 

approximation. 

The above contradiction can be partially removed by choosing a rapidly 

changing distribution function of the random variable yk, that has maximum near xk 

and minimum at the boundaries of the interval Δk. Here yk is random variable with the 

uniform cubic distribution 2/3

3( ) 1 (6 )f x x=  [8]. Each value of the uniform cubic 

distribution corresponds to a cube of uniform distribution in the interval [–1, 1]. Fig 2 

shows the main feature of probability density function of cubic uniform distribution 

as 3
0

lim ( ) .
x

f x
→

=  This property allows for efficient random descent both down a slope 

and along the entire bottom of a ravine. A normally distributed random vector gives 

much less efficiency. 

 

Fig. 2. Probability density function. The solid and dotted lines show the uniform 

distribution and cubic uniform distribution, respectively. 
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3. MOSFET model 

To demonstrate the properties of the random descent method, the MOSFET 

model from [9] was chosen as 
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where ID is a drain current; VGS and VDS are gate-source, drain-source voltages, 

respectively; VTH denotes a threshold voltage; β is an intrinsic transconductance 

parameter; VK is transverse electric field parameter; VST = k(VGS − VTH) is a drain 

saturation voltage; k  is empirical constant (0 < k < 1). Constants a and b are 

expressed explicitly from the conditions of continuity of the current and its first and 

second derivatives at 
DS STV V=  as 
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4. Random descent with different distributions of random parameters 

Fig. 3 shows the sequence of maximum error of model (1) along the descent 

for uniform and cubic uniform distribution of parameters and Δk = 0.05 xk for GaN 

MOSFET GS66508B [10]. 
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a) b) 

Fig. 3. Maximum error versus the number of function evaluations. (a) Uniform 

distribution. (b) Cubic uniform distribution. 

Since the graphs are random, their families are shown to improve reliability. 

The initial values of the parameters were obtained by least squares with a root mean 

square error of 2.5 %. With uniform approximation, the RMS error increases to 

3.5 %. The transition to a cubic uniform distribution reduces the number of objective 

function estimates in the case under consideration by two orders of magnitude. 

Note that the cubic uniform distribution accelerates the descent significantly 

only at the bottom of the ravine. Thus, this distribution allows us to obtain not so 

much a more accurate value of the minimum of the objective function, but to refine 

the determined parameters of the model and make the criterion for stopping the 

descent more reliable. 

Above, we used the Lp-norm for p = 2 for initial guess. Using the Lp-norm for 

p > 2 allows us to obtain initials at lower values of |δ|MAX. However, as p increases, 

the conditionality of the Hessian matrix decreases, so the maximum achievable value 

of p is low [11]. For various models and transistors, it has been experimentally 

established that 4 ≤ pMAX ≤ 32. With increasing p, |δ|MAX decreases monotonically,  

but some model parameters decrease non-monotonically, so a limited increase in p 

has little effect on the duration of random descent. 
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Conclusion 

The proposed method allows obtaining the exact minimum maximum error of 

the transistor model is simple and does not require complex subroutines. We expect 

that if there is a solution for the least squares method, then it also exists for the 

uniform approximation. The method does not introduce additional empirical 

coefficients, and can be used with any other methods of accelerating random descent. 
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