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Abstract. We examine in this paper two cases, which are very interested for the 

theory and experiments: a case of an integrated-optical waveguide with statistic 

surface roughness and a case of optical nanofibers with random rough surface. The 

peculiarities of approximate solutions of vector electrodynamic problems in the 

first cases in brief are discussed and useful evaluations of losses due to scattering 

also are given. Some results of research of radiation losses of optical nanofibers in 

assumption of Gaussian statistics of distorted glass/air interface are presented. In 

conclusion we mark a problem of synthesizing of an optical processor or/and 

optical sensor with high metrological parameters with allowance for the problem of 

light scattering in optical waveguides with surface roughness. 
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1. Introduction 

A lot of papers are devoted to the analysis of propagation of an electromagnetic 

wave in a planar multilayer regular dielectric two-dimensional (2D) waveguides (see, 

for example, [1-8]). A number of methods (see for example references [1-13]) are 

used for an analysis of processes of propagation and transformation of 

(wave)guiding, quasi-guiding and leaking modes, accompanying an exchange of 

energy among modes and between modes with surroundings in irregular waveguides. 

The integrated-optical waveguide is one of basic elements of the integrated 

optics and waveguide optoelectronics [2, 4, 6, 7, 9, 10]. In most cases waveguide 

serves as the basis for creation of the various optical integrated circuits [4]. In this 

connection the important direction in technology is the development of methods of 

creation of a waveguide with a low level of losses of the intensity of the directed 

mode on scattering by three-dimensional (3D) irregularities (boundaries roughness 

and/or heterogeneities of the waveguide layers; smooth irregularities) of the structure 

of a waveguide. 

In the paper we study two interested cases: a case of an integrated-optical 

waveguide with statistic surface roughness and a case of optical nanofibers with 

random rough surface. 

The light scattered in a waveguide can be registered [2-10, 12-37]: i) like 

radiated substrate-cover (substrate-air) radiation modes, and/or substrate radiation 

modes, or leaky modes, and as the radiation, scattered in the plane of a waveguide in 

the case of boundaries roughness and/or heterogeneities of the waveguide layers; ii) 

like diffracted and/or leaky waves in the case of smooth irregularities. 

As a rule, when analysing the waveguide scattering one gives main attention to 

the solution of the direct scattering problem i.e. to the determination of the field's or 

to the intensity's characteristics of the coherent radiation scattered in the waveguide. 

The found scattering diagrams (patterns) then can be used for the solution of an 

inverse problem [28, 33, 34] by the known comparison method, when one tries by 

that or different way to achieve the coincidence, for example, by the least squares 
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method (in rms sense) of the experimentally measured diagrams with the theoretically 

calculated one. 

When neglecting polarizing effects the problem of waveguide 3D scattering is 

reduced to a solution of known 2D wave equation. Then we assume absence of the 

cross-correlation relations between all types of irregularities (roughness of the 

boundaries and/or heterogeneity of the layers of waveguide). 

Progress in fiber optics technologies caused attention to the problem of radiation 

losses induced with a roughness of a waveguide surface [40]. The open surface of the 

waveguide core has a structure of frozen capillary wave. As formation of such 

structure results from equilibrium thermodynamics, it can not be eliminated by means 

of technology. Therefore, the roughness induced radiation losses are intrinsic in the 

waveguides with glass/air interface. These losses are considered to be critical when 

essential part of the light power is carried with an evanescent wave, particularly in 

photonic crystal waveguides [41, 42], and optical nanofibers [44, 45]. 

The waveguide scattering method is the most suited tool for the metrological 

control in the integrated optics since the determined characteristics and parameters of 

waveguide irregularities characterize the waveguide in a whole just as an integrated 

structure but not as the separated mediums used for its manufacture [14-22, 24, 25, 

28, 33]. The important advantage of the waveguide scattering method is that it allows 

increasing sensitivity of measurements in ~ 102-103 on a comparison with methods of 

single light scattering, due to repeated in phase scattering of the light on researched 

statistical irregularities. Other advantage of this method is the possibility of the 

research of scattering in a broad band of the variation of values of the lateral sizes of 

irregularities, including the size about the light wavelength [28-34, 39]. 

 

2. Scattering of electromagnetic monochromatic waves in an integrated-

optical waveguide with statistic irregularities. Main equations 

The scattering problem of a directed waveguide mode in a planar dielectric 

waveguide containing stochastic irregularities can be solved with the help of the 

theory of perturbations [2, 18, 24, 25, 28, 31-34, 39]. 



JOURNAL OF RADIO ELECTRONICS, N 9, 2010 
 

 4 

Generally for the description of an electromagnetic field E  in an irregular 

integrated-optical waveguide (see fig. 1) one can use the following vector equation: 

2 2 0
ε ω εµ

ε
∇ ∇ + ∇ + = 

 
E Ε Ε ,                                      (1) 

where ω  is the electromagnetic field frequency; 0rε ε ε= , 0rµ µ µ= ; ε  and µ  are the 

dielectric permittivity, and magnetic susceptibility, respectively; 0ε  and 0µ  are the 

electric and magnetic constants, respectively; ∇  is the well-known vector differential 

operator, and ∆=∇2  is Laplacian. This equation is fair in the rectangular Cartesian 

coordinates. The equation (1) is found with the help of the Maxwell’s equations. 

We consider the case of propagation in a waveguide along z -axis of the main 

TE-mode (for TM-mode the analysis is carried out similarly). Next we can write 

equation (1) as the approximate three-dimensional equation [28, 31-34, 39]. 

Keeping in the obtained equation only members of the first order of smallness in 

respect of sΕ  and ( )ε∆ r , we shall receive an approximate inhomogeneous wave 

equation, which can be considered as a homogeneous wave equation with 

perturbation as a source 0yΕ  in the right part: 

( ) ( ) ( ) ( )2 2 2
0 0 0, , , , , , ,s m s m m yx y z x y z x y z x zω µε ω µε ε∇ + ≈ − ∆Ε Ε Ε ,        (2) 

where 0yΕ  is the solution of the homogeneous undisturbed equation circumscribing 

the propagation of the main TE-mode in a waveguide forming of m-layers. 

 

Fig. 1. A three-layer (m = 3) irregular integrated-optical waveguide: 1 is the covering 
layer, 2 is the guiding layer, 3 is the substrate, 4 is the optical ray, 5 is the light 

scattered on the surface roughness; h  is the waveguide thickness. The optical ray 4 is 
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propagating along the axes z, undergoing the infringed total internal reflection on the 
rough boundaries of the waveguide. 

 
From the power point of view, the “source” in a right part of the equation (2) is 

the intensity of the mode, incident on an irregular area of waveguide and scattered in 

all enclosing space (3-D scattering). 

The solution of the given inhomogeneous wave equation can be obtained as a 

convolution of some Green function ( ); ' ' 'G x, y, z  x , y , z  with the expression for the 

source ( )', ', 'x y zε∆ : 

( ) ( ) ( ) ( )2
0 0, , ', ', ' ; ' ' ' ', ' ' ' 's yx y z x y z G x, y, z  x , y , z x z dx dy dzω µε ε= − ∆∫∫∫E E .  (3) 

The analysis shows, that in this case it is impossible to neglect polarizing effects 

and the consideration of the problem of waveguide scattering of light on three-

dimensional irregularities becomes hardly complicated, since the determination of 

analytical expression for a Green function represents here not at all trivial problem. 

When neglecting the polarizing effects, originating during scattering, it is 

enough to require, that the relative variation of the dielectric permittivity on a 

distance of one wavelength was much less than unit. Then it is possible to use a 

simple wave equation: 

22
0 0n k∆ + =Ε Ε ,                                                (4) 

which is fair for each Cartesian component of the vector of electrical field. For 

fundamental TE-mode, propagating along the axes z , under condition / y∂ ∂  = 0, the 

formula (4) accepts next form: 

2 2
22

02 2
0y y

y

E E
n k E

x z

∂ ∂
+ + =

∂ ∂
,                                       (5) 

where ( ) ( ) ( )2 2 2
0, , ,n x z n x z n x z= + ∆ , ( )2

0 ,n x z  describes regular properties of an 

appropriate medium of waveguide (accepts values 1n , 2n  or 3n  accordingly), and the 

component ( )2 ,n x z∆  describes irregularities of the structure of a waveguide (both 

irregularity of the boundaries, and heterogeneity of a refraction index). 
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For application of the theory of perturbations the addendum ( )2 ,n x z∆  should 

not be necessarily the value of the small order. There is quite enough, that the area, 

within the limits of which this component differs from zero, was very narrow. The 

solution of the equation (5) with help of the approximate method of “ideal modes” [2] 

is then finding as the expansion of certain scattering field on the orthogonal set of the 

modes of the rectilinear optical waveguide. 

Thus the solution for component of a scattered field in any point of space with 

coordinates x, z takes form: 

( ) ( ); ;y yE q L E z dρ ρ ρ= ∫ % % % ,                                         (6) 

where q  is the effective amplitude of scattering TE-modes, defined as factor of 

expansion of a field on all radiation modes; ρ%  is the transversal component of the 

propagation constant of the radiation modes (see fig. 2). 

On the fig. 2 the diagram of the wave numbers β and ρ are presented: 
222 )( mkn=+ ρβ , k = 2π/λ, m = 1, 2, 3; K is a certain harmonic lattice vector in the 

infinitive spectrum of the irregularities; θ is the scattering angle in the xz plane of 

incidence. Here β represents the longitudinal component of the propagating constant 

of radiating modes. 

The factors of expansion are fined from the orthogonality relations with the help 

of the theory of perturbations. Both numerical methods of direct calculation and 

analytical methods of determination of an approximate value of the integral in 

expression (6) can be used, for example, method of the stationary phase or saddle 

point method. 

If the condition / y∂ ∂  = 0 is executed, it is possible to express any distribution 

of the field of a waveguide as the superposition of orthogonal TE- and TM-modes of 

an ideal rectilinear waveguide [2]: 

( ) ( )
0

y y yE c E q E dν ν
ν

ρ ρ ρ
∞

= +∑ ∑ ∫ , 

where the first sum is distributed to all guided even and odd TE-modes, and the 
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combination of the sum and integral takes into account all radiation modes. 

Similarly for TM-modes: 

( ) ( )
0

y y yH d H p H dν ν
ν

ρ ρ ρ
∞

= +∑ ∑ ∫ . 

The expansion factors cν , ( )q ρ , dν  and ( )p ρ  are fined with the help of the 

orthogonality relations. 

 

 

Fig. 2. Wave numbers diagram of an asymmetric irregular optical waveguide 
 
If the scattering happens on statistic irregularities, the averaging of the scattered 

radiation power on an ensemble is applied. Then the full intensity transferable in the 

waveguide or, for example, the power of the radiation stipulated by the scattering of 

the directed modes on the irregularities can be found. Thus, the solution of the direct 

scattering problem can be obtained as the field solution, i.e. as the peak-phase 

distributions, or as the solution circumscribing distribution of the intensity of the laser 

radiation scattered on irregularities. These expressions describe both the scattering on 

the irregularities of the boundaries of the waveguide and on the heterogeneities of the 

refraction index of the waveguide mediums. 

To estimate the radiation losses of waveguide mode power due to waveguide 

scattering, we should find the full power, transferable by all propagating TE modes of 

an asymmetric irregular optical waveguide as follows: 
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2
22

1 0

| ( , ) | | ( , ) |yP P C q d
ν

ν β β β ρ
+∞

Σ

  = + 
  
∑ ∑ ∫ .                            (7) 

Our computer modeling according equation (7) demonstrates e.g. that in an 

integrated-optical waveguide with the surface roughness geometrical parameters σ  = 

4.2 nm (surface roughness rms high) and r  = 0.18 µm (surface roughness correlation 

interval) the losses of the guided mode can achieve 6-10 dB/cm. 

One can achieve some decrease of radiation losses in this case by means of the 

certain optimization of parameters of the waveguide under consideration, for 

example, by chosen of an optimal value of the longitudinal component of the 

propagating constant 0 kβ γ=  of the guiding mode [39] (γ  is the effective refraction 

index of the waveguide or an effective coefficient of waveguide phase slowing). We 

can define needing γ  via resolving the dispersion relation for investigating 

waveguide (see the next paragraph of this paper). 

 

3. Dispersion relations and results of numerical calculations for three layer 

regular waveguide 

For simulation the well known representation of dispersion relation in a 

trigonometrical kind for thee layer waveguide was used: 

( ) ( ) ( )1f c f s fh arctg arctg mρ ρ ρ ρ ρ π= + + − , 

where 2 2
0 2f k nρ γ= −  is the vertical component (for 0h x− < < ) of the propagation 

constant of a directed ТЕ-mode along an axes z ; h  is the thickness of a waveguide 

layer; γ  is the factor of phase slowing down (effective waveguide refraction index); 

2 2
0 1c k nρ γ= −  is the vertical component of the propagation constant of a directed 

ТЕ-mode for 0x > ; 2 2
0 3s k nρ γ= −  is the vertical component of the propagation 

constant of a directed ТЕ-mode for x h< − ; m  = 0, 1, 2,…. 
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The dispersing relations ( )hγ γ=  for the first five TE and ТМ modes of a 

regular three-layer polystyrene integrated-optical waveguide are represented in the 

fig. 3. 

 

 

Fig. 3. Dispersing relation ( )hγ γ=  for three-layer polystyrene integrated-optical 

waveguide. 
 

4. Optical nanofibers with random rough surface. Radiation losses in optical 

nanofibers with random rough surface 

In recently published paper [46], the radiation losses in nanofibers are estimated 

in assumption of sinusoidally perturbed surface. It is demonstrated that for realistic 

perturbation amplitude, the typical values of the loss coefficient are about 1–10-3 

dB/mm and substantially depend on the perturbation period and refractive index 

contrast. Besides, the paper contains the conclusion that the model of sinusoidal 

perturbation can be generalized for all kinds of the surface deformation by means of 

Fourier analysis. This statement is controversial because direct generalization of the 

represented model assumes linear relationship between the amplitude of perturbation 

and the power of light scattered by this perturbation. 

Meanwhile, the radiated power is expressed as the square of linear functional of 

perturbation amplitude and thus can not be represented as a sum of independent 

contributions of perturbation’s Fourier components. This problem is solved with a 

help of statistical approach, when the perturbed surface is treated as a random field 

and the radiated power is determined with averaging over perturbation ensemble. 
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The statistical approach to the problem of light scattering in randomly perturbed 

waveguides, first developed in early studies of Marcuse [14, 48], was used in [41, 42] 

in order to estimate the lower bound of intrinsic losses in photonic crystal fibers. The 

mean radiated power is expressed through the power spectral density of the random 

roughness and this relation has the linear character. Marcuse’s approximation is quite 

good for weakly guiding fibers but it sets aside the following. 

It is well known [49] that the solution of Maxwell equations for inhomogeneous 

medium in the first approximation of the small perturbation method has a form of 

linear relation between the mean power of the scattered wave and the power spectral 

density of refractive index fluctuations. It is demonstrated [48] that the perturbation 

of the waveguide surface can be represented with equivalent perturbation of the 

refractive index. The refractive index perturbation is expressed as discontinuous 

function of the amplitude of the surface roughness. As this relation can not be 

linearized, the radiated power must have nonlinear form of dependence on the 

roughness power spectrum even in the first approximation of the small perturbation 

method. This means that a part of the scattered power, proportional to low frequency 

components of the roughness spectrum, is lost in the linear solutions. As the power 

spectrum has inverse-square law of dependence on the spatial frequency [43], the 

scattering on harmonics of the small frequencies can be considerable.  

It was established former [50] that the power spectrum of refractive index 

fluctuations in perturbed planar waveguide can be expressed through the roughness 

correlation with a help of Price’s theorem about nonlinear operations over Gaussian 

random field [51, 52]. In the present paper, we establish the relation between the 

radiation losses and the power spectrum of the rough surface of nanofiber, and to 

estimate the loss value. 

Following [6, 40, 46], the rough surface of a fiber waveguide (fig. 4) is 

represented as a variation of its radius ρ : 

),(),( 0 ϕξρϕρ zz += .                                              (8) 
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In equation (8) 0ρ  is the radius of unperturbed waveguide, the function ),( ϕξ z  

describes the perturbation (see fig. 4). 

We take that ξ  is the uniform Gaussian random field [12] with zero mean and 

statistical correlation function, which depends on the residual coordinates 

12 zzz −=∆ , 12 ϕϕϕ −=∆ : 

),(),(),( 2
2211

*
ϕξξ γσϕξϕξ ∆∆= zzz , 

where 2

ξσ  is the roughness variance, ξγ  denotes normalized correlation. We suppose 

the perturbation magnitude ξ  being small. The small order of ξ  means that the 

amplitude of electric field of both propagating and radiation modes can be considered 

constant within the perturbed region. As in nanofibers the perturbation is less in scale 

than 1 nm [44], the small order condition holds with high accuracy. 

We confine the consideration to the most important case of single-mode 

operation of the waveguide. So, the propagating light wave has the appearance of the 

fundamental HE11 mode with electric component )exp(),( 1111 zir βϕeE = . 

The scattered wave is expressed as a superposition of radiation ITE and ITM 

modes: 

))(exp(),;( zQirQrr βϕνν ±= eE , 

where ( )22

cl

22

0

2 βρ −= nkQ , the signs “+/-”correspond to the forward and backward 

propagating modes, respectively, and: 

K2,1,0),exp();(),;(

).exp()(),( 11

±±==
=

ννϕϕ
ϕϕ

νν irQrQ

irr
rr

Ψe

Ψe
 

The total mean power, radiated with the random roughness, is expressed with 

integral over the whole of system of radiation modes [14, 40, 48]. 

The loss coefficient is obtained as: 

L
P

P
/1lg10 rad 






 −−=η .                                             (9) 
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In equation (9) P  is the power of the fundamental mode; L  is the length of fiber. It 

follows from our results that radiation losses are linear in L . 

We applied the proposed theoretical model to estimate the radiation losses 

caused with the rough glass/air interface of the nanofibers. The physical parameters 

of the model were chosen so as to make possible comparison with the reported 

experiments [44, 45]. For the lack of data, we confined the calculation to the case of 

the silica fiber, for which we accepted con  = 1.46. 

 

 

Fig. 4. Perturbed fiber waveguide. nco, ncl, are the refractive indices of the core and 
the cladding (air), respectively. 

 
The dependence of the loss coefficient on the fiber diameter was calculated for 

the wavelength λ  = 633 nm (see fig. 5). 

We should note that the perturbation power spectrum is expected to have 

inverse-square low, therefore, the contribution of the low frequencies is very critical, 

and could be explained in terms of the effective depth of the perturbed layer. 

Note that passage to the limit of spatial frequencies →cutβ  0 gives the 

reasonable estimation of losses, but leads to the growth of the effective depth of the 

perturbation to the values which exceed the waveguide diameter. To our opinion, the 

extremely low frequency perturbations with large amplitudes should be understood as 

random waveguide bends. Naturally, there are no reasons to describe such 

perturbations with the inverse-square law spectrum. So, the estimation of radiation 

losses in the silica nanofibers with <D  180 nm has rather qualitative character. 

 

 



JOURNAL OF RADIO ELECTRONICS, N 9, 2010 
 

 13 

 
a) 

 

b) 

 
 

Fig. 5. Dependence of the loss coefficient on the fiber diameter, in dB/mm. 
a) Linear approximation (dash), nonlinear loss component (dot), aggregate losses 

(solid), βcut = 0. b) Losses for different cutoff frequencies of surface perturbation, βcut 
= 1.0 mm-1 (blue), βcut = 0.1 mm-1 (red), βcut = 0 (black). 

 
The calculated losses are somewhat less in value than those observed 

experimentally. Apparently, the suggested model is approximate, and sets aside some 

important particularities of the experiment. With it, the model must be useful in 

understanding of losses in optical nanofibers, caused with intrinsic roughness of 

glass/air interface. 

 
5. Conclusion 

All facts following from the presented paper should be taken into consideration, 

when one needs to synthesize e.g. an optical processor or/and optical sensor with high 

metrological parameters [4, 7, 9, 12, 13, 37-40, 44, 53-58]. 

In summary we should noted that the offered methods can be applicable for 

analysis of similar dielectric, magnetic, optic and meta materials structures in enough 

broad band of electromagnetic wavelengths. 
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