ЛОКАЛЬНОЕ ИЗМЕРЕНИЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ С ПОМОЩЬЮ ТЕРАГЕРЦОВОЙ ДЖОЗЕФСОНОВСКОЙ СПЕКТРОСКОПИИ

А. В. Снежко^{1,2}, В. В. Павловский¹, В. Н. Губанков¹, В. И. Покалякин¹ ¹Институт радиотехники и электроники им. В.А. Котельникова РАН ²Московский физико-технический институт (ГУ)

Статья получена 15 сентября 2015 г.

Аннотация. В работе продемонстрирована методика локального определения действительной части диэлектрической проницаемости различных материалов с малым тангенсом угла потерь, основанная на джозефсоновской спектроскопии, в терагерцовой области частот. Для ($\overline{1012}$) г-сапфира и (001) NdGaO₃ получены значения $\varepsilon_{sapphire} = 9.6$ при частоте f=155,2 ГГц и $\varepsilon_{NGO} = 23$ при частоте f=106,4 ГГц, соответственно.

Ключевые слова: терагерцовая электроника, сверхпроводимость, джозефсоновский переход.

Abstract. In the paper a method based on Josephson spectroscopy for local measurement of real dielectric permittivity of different materials with low losses is demonstrated. Dielectric permittivities of r-cut sapphire $\varepsilon_{\text{sapphire}} = 9.6$ at *f*=155,2 GHz and (001) NdGaO₃ $\varepsilon_{\text{NGO}} = 23$ at *f*=106,4 GHz are obtained.

Key words: terahertz electronics, superconductivity, Josephson junction.

Введение

Промежуточный частотный диапазон между микроволновым и дальним инфракрасным диапазонами, называемый часто терагерцовым диапазоном и охватывающий область частот от нескольких десятков гигагерц до несколько единиц терагерц, представляет большой интерес у физиков, работающих во всех областях науки. В частности, измерения диэлектрических свойств материалов играют важную роль в разработке и создание элементной базы микроэлектроники. Значительный прогресс технологии субмикронных

структур позволил расширить частотный диапазон работы элементов в Но остается не до конца решенной проблема терагерцовую область. спектроскопии в этом диапазоне, так как эта область находится вне применения так И оптических методов спектроскопических как микроволновых, исследований. В микроволновом диапазоне, где длина электромагнитной волны больше характерного размера образца, распространенным методом определения диэлектрической проницаемости является измерение емкости резонатора с исследуемым образцом [1], [2]. Данный метод позволяет измерять диэлектрическую проницаемость в широком диапазоне значений (1 – 300) при частотах до 20 ГГц. При увеличении частоты усложняется процесс экстракции измеренных параметров, и расширяются требования к поверхности образца [3]. В оптической области частот основным инструментом определения диэлектрической проницаемости является Фурье-спектроскопия, обладающая высокой точностью [4]. Однако, с увеличением длины волны, точность измерений падает, поэтому данная методика неприменима в субмиллиметровом диапазоне длин волн. В настоящее время для многих спектроскопических измерений в терагерцовой области частот широко используется спектроскопия с разрешением по времени (time-domain spectroscopy) [5]. Данная методика для измерения диэлектрической проницаемости предполагает высокие требования к поверхности исследуемого объекта, также могут возникать резонансные особенности, геометрией образца. Кроме связанные С того, В высокочувствительных приёмниках электромагнитного излучения используются приборы, охлаждаемые до температуры 77 К и ниже, тогда как традиционные методики исследования диэлектрической проницаемости достаточно сложно реализовать для измерений при низких температурах (ниже 77 К). Альтернативой или дополнением к вышеописанным методикам измерения можно отнести новый инструмент _ джозефсоновскую спектроскопию. Возможности джозефсоновской спектроскопии были успешно продемонстрированы исследования различных источников как для электромагнитного излучения в терагерцовой области частот [6], так и для

частотной характеризации электродинамических систем, в частности, планарных логопериодических антенн в диапазоне частот от 60 до 1.2 ТГц [7] и планарных квадратных резонаторов с разрезами в диапазоне частот от 50 ГГц до 700 ГГц [8]. В предлагаемой работе демонстрируется применение джозефсоновской спектроскопии для измерения диэлектрической проницаемости подложек из сапфира и NdGaO₃ при частоте f~200 ГГц при температуре 5К.

2. Методика измерений

Известно, что при взаимодействии джозефсоновского перехода (ДП) с планарным открытым резонатором на диэлектрической подложке, в последнем джозефсоновскими осцилляциями возбуждается фундаментальная мода [9], [10]:

$$f_r = \frac{c}{2L\sqrt{\varepsilon_{ef}}}\tag{1}$$

где f_r – частота резонанса, L – физическая длина резонатора, ε_{ef} - эффективная диэлектрическая проницаемость окружения резонатора. При этом на статических характеристиках джозефсоновского перехода, – вольтамперной характеристике (ВАХ) I(V) и зависимости дифференциального сопротивления от напряжения $R_d(V)=dV/dI$, – возникают характерные особенности при напряжении V_r , связанные с резонансной частотой резонатора соотношением Джозефсона:

$$f_r = \frac{2e}{h} V_r \tag{2}$$

где *е* – заряд электрона, *h* – постоянная Планка. В настоящей работе этот эффект используется для измерения диэлектрической проницаемости подложки, на которой сформирован планарный резонатор.

В работе использовались бикристаллические ДП, полученные с помощью УФ-литографии из эпитаксиальных тонких пленок высокотемпературного сверхпроводника YBa₂Cu₃O_{7-х} (критическая температура $T_{\kappa} \sim 90$ K) толщиной 300 нм, напыленных на бикристалические подложки из (001) NdGaO₃. Нормальное сопротивление ДП R_n =2.6 Ом и характерное напряжение $V_c=I_cR_n$ =

1.1 мВ при температуре Т=5 К. ДП такого типа с высокой точностью резистивной модели (рис.1) [11]. удовлетворяют Форма подводящих виде "bow-tie" обеспечивала минимальность электродов В амплитуды собственных резонансов и позволяла обеспечить согласование ЛП с резонаторами разных размеров.

Рис.1. Вольтамперная характеристика I(V) и зависимость дифференциального сопротивления $R_d(V) = dV/dI$ автономного бикристаллического джозефсоновского перехода из YBa₂Cu₃O_{7-х} при температуре T=5 K в магнитном поле H=80 Гс

На диэлектрических подложках из сапфира и NdGaO₃ были сформированы УФ-литографией планарные квадратные открытые резонаторы из тонких пленок меди толщиной 600 нм с длиной внешней стороны D=113 мкм и с длиной внутренней стороны d=87 мкм. Пленки были получены термическим распылением на подложки. Для исключения механического повреждения и омического контакта с ДП, резонаторы были покрыты тонким слоем полиметилметакрилата (PMMA). Подложка с резонатором механически накладывалась на подложку с ДП так, чтобы резонаторная система позиционировалась около слабой связи ДП.

3. Результаты

Сборка из подложек с ДП и резонатором (рис.2) охлаждалась в диапазоне

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N9, 2015

температур 4.2 – 90 К, с помощью криогенной вставки в сосуд Дьюара с оптимального возбуждения Для резонансных жидким гелием. мод В резонаторах величина критического тока ДП I_с варьировалась с помощью магнитного поля с величиной 0 – 100 Гс, создаваемое медной катушкой. В BAX ДΠ режиме тока V(I)задания снимались И зависимость дифференциального сопротивления ДП от напряжения на нем $R_d(V) = dV/dI$.

Рис.2. (а) – фото джозефсоновского перехода с приложенным планарным резонатором; (б) – схематическое представление слоев сборки джозефсоновского перехода и планарного резонатора.

Рис.3. Вольтамперная характеристика и зависимость дифференциального сопротивления от напряжения джозефсоновского перехода, взаимодействующего с планарным открытым резонатором на подложке из сапфира *D*=114 мкм при температуре *T*=5 K.

ВАХ и зависимость $R_d(V)$ ДП, взаимодействующего с резонатором на диэлектрической подложке из сапфира, представлены на рис.3. На полученных зависимостях наблюдаются особенности, связанные с взаимодействием ДП с резонатором. Согласно (2) резонансной частоте резонатора f_r соответствует напряжение V_r , середины особенности на $R_d(V)$. В рассматриваемом случае характерная особенность наблюдалась вблизи напряжения V_r =321 мкВ, что, согласно (2), соответствует f_r =155.2 ГГц. Учитывая среднюю длину резонатора $L=2(D+d)-\Delta=390$ мкм, где $\Delta=10$ мкм – ширина разреза резонатора, эффективная диэлектрическая проницаемость из (1) равна ε_{ef} =6.1. Благодаря достаточно большому расстоянию между резонатором и подложкой ДП (~20 мкм), вкладом в эффективную диэлектрическую проницаемость подложки ДП можно пренебречь, получаем:

$$\varepsilon_{ef} = \frac{\varepsilon_{sapphire} + \varepsilon_{PMMA}}{2} \tag{3}$$

Рис.4. Зависимости дифференциального сопротивления от напряжения джозефсоновского перехода, взаимодействующего с планарным резонатором на подложке из сапфира *D*=144 мкм, (1) – без тефлоновой подкладки, (2) – с тефлоновой подкладкой, толщиной ~20 мкм.

В подтверждение малого вклада подложки ДП для планарного резонатора

с длиной стороны квадрата D=144 мкм на сапфировой подложке расстояние было увеличено с помощью тефлоновой подкладки толщиной 20 мкм (рис.4). Как видно, частотного сдвига особенности вблизи напряжения $V_r=251$ мкВ не произошло. При этом в результате увеличения расстояния между ДП и резонатором, амплитуда возбуждающего электрического поля уменьшилась, что привело к уменьшению амплитуды особенности.

Используя известное значение диэлектрической проницаемости РММА [12] $\varepsilon_{\text{РММА}} = 2.6$ и учитывая (3), получаем $\varepsilon_{\text{sapphire}} = 9.6$, что близко к одному из значений компонент тензора диэлектрической проницаемости (1012) r-сапфира Согласно [14] электрическое поле, возбуждаемое в резонаторе [13]. разрезе сосредоточено В области с малыми размерами. Данное В исключительное свойство даёт преимущество перед другими альтернативными способами измерения, позволяя проводить локальную диагностику. Если контролировать расположение разреза резонатора относительно главных осей кристалла, становится возможным измерить все диагональные компоненты тензора диэлектрической проницаемости для анизотропных веществ.

Рис.5. Вольтамперная характеристика и зависимость дифференциального сопротивления от напряжения джозефсоновского перехода, взаимодействующего с планарным открытым резонатором на подложке из

NdGaO₃D=114 мкм при температуре T=5 K.

На рис.5 представлены результаты измерений для резонатора с D=114 мкм на подложке из NdGaO₃. Характерная особенность наблюдается при напряжении $V_r=220$ мкВ, что даёт значение диэлектрической проницаемости NdGaO₃ $\varepsilon_{NGO} = 23$, которое согласуется со значением, полученным в [15].

4. Заключение

Продемонстрирован новый локальный метод определения действительной части диэлектрической проницаемости материалов с малыми потерями. Разработанная методика применима в терагерцовой области частот (20 ГГц – 2 ТГц), где стандартные методы измерений теряют эффективность, и позволяет проводить локальную диагностику материалов и резонаторных структур. Для (1012) г-сапфира и (001) NdGaO₃ получены значения диэлектрических проницаемостей $\varepsilon_{sapphire} = 9.6$ на частоте f=155.2 ГГц и $\varepsilon_{NGO} = 23$ при частоте f=106,4 ГГц, соответственно, которые согласуются со значениями ранее опубликованные в литературе.

Автор выражает благодарность Ю. Дивину и И. Гундаревой за предоставленные бикристаллические джозефсоновские переходы.

Работа частично финансировалась грантом РФФИ 14-07-31323 мол_а и стипендией Президента РФ.

Литература

- 1. Kent G. "Nondestructive permittivity measurement of substrates" // IEEE Transactions on Instrumentation and Measurement, 1996, vol. 45, pp.102-106.
- Janezic, M.D. "Full-Wave Analysis of a Split-Cylinder Resonator for Nondestructive Permittivity Measurement" // IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, pp. 2014-2020.

- 3. Hammler J., Gallant A., Balocco. "Simple de-embedding and simulation technique to find permittivity with a THz vector network analyser" // in Proceedings of IRMMW-THz, 2015.
- 4. James J., "A Student's Guide to Fourier Transforms" // New York: Cambridge University Press, 2011.
- 5. Suzuki M., Tonouchi M., "Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation" // Applied Physics Letters, 2005, 86, 051104.
- Divin, Y., Snezhko, A. and et al. "Terahertz Applications of Hilbert-Transform Spectral Analysis" // IEEE Transactions on Applied Superconductivity, 2014, vol. 24, issue 4.
- V. V. Pavlovskii, I. I. Gundareva, O. Yu. Volkov, et al. "Extension of the frequency range of Josephson impedance spectroscopy" // J. Commun. Technol. Electron., 2013, vol. 58, pp. 951 – 955.
- Snezhko A., Gubankov V. "Coupling of bicrystal Josephson junction and planar resonator in sub-THz frequency range" // Nonlinear world, 2015 vol. 13, №2, pp. 46 – 48.
- O. Volkov, and et.al, "Josephson spectroscopy for local diagnostics of planar resonator systems in millimeter wavelength range" // Radiotekhnika I Electronica, 2015, vol. 60, pp. 1 6.
- 10.Zhou L., Huang X/, Zhang Y., Chui S.-T. "Resonance properties of metallic ring systems" // Materials Today, 2009, vol.12. pp. 52-59.
- 11.K. Likharev, "Dynamics of Josephson Junctions and Circuits," // Gordon and Breach, 1986
- 12.Yun-Sik Jin, Geun-Ju Kim and Seok-Gy Jeon "Terahertz Dielectric Properties of Polymers" // Journal of the Korean Physical Society, Vol. 49, No. 2, 2006, pp. 513-517.
- I. Vendik, O.Vendik, S.Govergian. "Effective dielectric permittivity of r-cut sapphire microstrip" // 24th European Microwave Conference, 1994. 1994, pp. 395 – 400.

- 14.Sher-Yi Chiam and et al. "Spectral properties of thick split ring resonators in the THz regime" // in Proceedings of the International Society for Optical Engineering, 2008.
- 15.Krupka J. and et al. "Dielectric Properties of Single Crystals of Al₂O₃, LaAlO₃, NdGaO₃, SrTiO₃, and MgO at Cryogenic Temperatures" // IEEE Transactions on Microwave Theory and Techniques, 1994, vol. 42, №10.