Abstract. At
frequencies of 22.2; 37.5: 60 and 94 GHz, the dependences of reflectivity and
transmissivity of the snow layer and artificial snow-like media on the layer
thickness, size and volume density of the particles were measured. The
experimental dependences of the reflectivity and transmissivity on the layer
thickness were approximated by the relations of the two-flux Kubelka-Munch
theory. The frequency dependence of the backscattering coefficient is analyzed.
It is established that the frequency exponent depends on the parameters of the
scattering structure. For structures with particle sizes exceeding 1 mm, the
frequency exponent decreases with increasing frequency, reaching a minimum in
the interval 60 ... 94 GHz. At values of the volume density of fine-grained
snow below 0.25, the frequency exponent, on the contrary, increases with
increasing frequency due to the influence of clusters. Regardless of the
particle size, the frequency exponent increases with increasing volume density,
especially on the range of volume density values of 0.4 ... 0.6.
Key words: dense random discrete media,
microwaves, backscattering, frequency dependence, particle size, volume
density, clusters.
References
1.
Ulaby F. T., Moore R. K., and A. K. Fung.
Microwave Remote Sensing: Active and Passive, Vol. 3. Artech House,
Norwood, MA, 1986. 1065p.
2.
Tsang L., Kong J. A., Ding K. H. Scattering
of Electromagnetic Waves. Vol. 1: Theories and Applications.
Wiley-Interscience. New York. 2000. 426p.
3.
Tsang L., Kong J. A., Ding K. H., C. O.
Ao. Scattering of Electromagnetic Waves. Vol. 2: Numerical Simulations.
Wiley-Interscience. New York. 2001. 700p.
4.
Ishimaru A. Wave propagation and
scattering in random media. Academic, New York, 1978; Mir, Moscow, 1981.
Vol. 1. 280p.
5.
Cox S. J,, Reshetnyak V. Yu., Sluckin T.
J. Effective medium theory of light scattering in polymer dispersed liquid crystal
films. J. Phys. D: Appl. Phys., 1998, Vol.31, No.14, pp.1611-1625.
6.
Rozenberg G. V. Absorption spectroscopy
of dispersed materials. Uspekhi fizicheskhih nauk, 1959, Vol. 69, No. 1.
pp. 57-104. (In Russian)
7.
Barabanenkov Yu.N. Multiple
scattering of waves by ensemble of particles and the radiative transpot.
Soviet
Physics Uspekhi,
1975, Vol.18, No. 9, pp. 673-689 DOI: 10.1070.PU1975v018n09ABEH005200
8.
Chen C.-T., Tsang L., Guo J., et. al.
Frequency dependence of scattering and extinction of dense media based on
three-dimensional simulations of Maxwell’s equations with applications to snow.
IEEE Trans. Geosci. And Remote Sens., 2003, Vol.41, No.8, pp.1844-1852.
9.
Golunov V. A., Korotkov V. A., Sukhonin E.
V. Effektyi rasseyaniya pri izluchenii millimetrovyih voln atmosferoy i
snezhnyim pokrovom. [Scattering effects
under the millimeter wave emission from atmosphere and snow cover].
Moscow, VINITI Publ. Itogi Nauki i Tekhn. Radiotekhnika, Vol. 41, 1990, pp.
68-136. (In Russian).
10. Golunov V. A., Korotkov V. A., Sokolov
A. V. Millimeter waves reflection and transmission in random discrete layer. Elektromagnitnye
volny i elektronye sistemy, 1997, Vol. 2. No. 1. P. 39-46. (In
Russian)
11. Wiesman A., Mätzler C. Microwave
emission model of layered snowpacks. Remote Sens. of Environment., 1999,
Vol. 70, pp. 307-316.
12. Pulliainen J. T., Grandell J.,
Hallikainen M. T. HUT snow emission model and its applicability to snow water
equivalent retrieval. IEEE Trans. on Geosci. Remote Sens., 1999.,
Vol. GE-37., No. 3., pp.1378-1390.
13. Golunov V. A. Thermal emission from dry
homogeneous snow cover in the MM wave range. Uspekhy sovremennoy
radioelektroniky, 2002, No. 6, pp. 35-44. (In Russian)
14. Ishimaru A., Kuga Y. Attenuation
constant of a coherent field in a dense distribution of particles. J. Opt.
Soc. Am., 1982, Vol.72, No.10, pp. 1317-1320.
15. Beard, C. L., Kays T. H., Twersky V.
Scattering by randomly distribution of spheres vs. concentration. IEEE Trans.
Antennas and Propag., 1967, Vol. AP-15. No.1, pp. 99–118.
16. Hawley S. M., Kays T. H., Tversky V.
Comparison of distribution functions from scattering data on different sets of
spheres. IEEE Trans. Antennas and Propagation., 1967, Vol. AP-15,
No.1, pp. 118-135.
17. Varadan V. K., Bringi V. N., Varadan V. V.
and Ishimaru A. Multiple scattering theory for waves in discrete random media
and comparison with experiments. Radio Science, 1983, Vol.18, No.3,
pp. 321 – 327.
18. Golunov V.A. Coherent attenuation of
electromagnetic waves by weakly absorbing dense random discrete (snow-like)
media. Journal of communications technology and electronics, 2015, Vol.
60, No. 1, pp. 29–34.
19. Golunov V. A., Barabanenkov Yu. N.
Radiometric methods of measurement of the total reflectivity, the total
transmissivity and the coherent transmissivity of a weakly absorbing random
discrete medium layer in the millimeter wavelengths range. Proc. Progress in
Electromagnetics Research Symp. Moscow, Russia, August 19-23, 2012. Electromagn.
Acad.,
Cambridge, 2012, pp.1415-1418.
20. Golunov V. A.,
Kuz’min A. V.,
Skulachev D.P., Khokhlov G.I.
Experimentally obtained spectra of the millimeter waves' attenuation,
absorption and scattering from dry fresh snow. Zhurnal Radioelektroniki -
Journal of Radio Electronics, 2016, No. 9. Available at
http://jre.cplire.ru/jre/sep16/4/text.pdf. (In
Russian)
21. Golunov V. A., Kuz’min A. V., Skulachev
D. P., Khokhlov G. I. Experimental results on the frequency dependence of
attenuation, scattering, and absorption of millimeter waves in a dry snow
cover. Journal of Communications Technology and Electronics, 2017, Vol.
62, No. 9, pp. 951–959.
22. Andreev
G. A., Golunov V. A,
Sokolov A. V.
Rasseyanie i izluchenie millimetrovyih radiovoln prirodnyimi obrazovaniyami
[Scattering and emission of millimeter radio waves from natural formations] Moscow,
VINITI Publ. Itogi Nauki i Tekhn. Radiotekhnika,
Vol. 20, 1980, pp. 39-106.
(In Russian).
23. Kubelka P. New contributions to the
optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am.,
1948, Vol. 38, No.5, pp. 448-457.
24. Pan J., Durand M., Sandells M., et al.
Differences between the HUT snow emission model and MEMLS and their effects on
brightness temperature simulation. IEEE Trans. on Geosci. and Remote Sens.,
2016, Vol. 54, Issue 4, pp. 2001–2019. DOI:
10.1109/TGRS.2015.2493505.
25. Roy, V., Goïta K., Royer A., et.
al. Snow water equivalent retrieval in a Canadian boreal environment from
microwave measurements using the TKK snow emission model. IEEE Trans. on
Geosci. and Remote Sensing, 2004, Vol. GE-42, No. 9, pp. 1850.–1859.
26. Tedesco M., Kim E. J. Intercomparison of
electromagnetic models for passive microwave remote sensing of snow. IEEE
Trans. on Geosci. and Remote Sensing, 2006, Vol. GE-44, No.10, pp.
2654-2664.
27. Stogryn A. Correlation functions for
random granular media in strong fluctuation theory. IEEE Trans. Geosci. and
Remote Sensing, 1984, Vol. GE-22, No.2, pp.150-154.