"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 9, 2017

contents             full textpdf   

The exponent of the frequency dependence of microwave backscattering from dry snow and artificial snow-like media


V. A. Golunov, G. I. Kchokchlov

Kotel’nikov Institute of RadioEngineering and Electronics of Russian Academy of sciences, Fryazino Branch, Vvedensky sq. 1, Fryazino Moscow region, 141190, Russia


The paper is received on September 6, 2017


Abstract. At frequencies of 22.2; 37.5: 60 and 94 GHz, the dependences of reflectivity and transmissivity of the snow layer and artificial snow-like media on the layer thickness, size and volume density of the particles were measured. The experimental dependences of the reflectivity and transmissivity on the layer thickness were approximated by the relations of the two-flux Kubelka-Munch theory. The frequency dependence of the backscattering coefficient is analyzed. It is established that the frequency exponent depends on the parameters of the scattering structure. For structures with particle sizes exceeding 1 mm, the frequency exponent decreases with increasing frequency, reaching a minimum in the interval 60 ... 94 GHz. At values of the volume density of fine-grained snow below 0.25, the frequency exponent, on the contrary, increases with increasing frequency due to the influence of clusters. Regardless of the particle size, the frequency exponent increases with increasing volume density, especially on the range of volume density values of 0.4 ... 0.6.

Key words: dense random discrete media, microwaves, backscattering, frequency dependence, particle size, volume density, clusters.


1.     Ulaby F. T., Moore R. K., and A. K. Fung. Microwave Remote Sensing: Active and Passive, Vol. 3. Artech House, Norwood, MA, 1986. 1065p.

2.     Tsang L., Kong J. A., Ding K. H. Scattering of Electromagnetic Waves. Vol. 1: Theories and Applications. Wiley-Interscience. New York. 2000. 426p.

3.     Tsang L., Kong J. A., Ding K. H., C. O. Ao. Scattering of Electromagnetic Waves. Vol. 2: Numerical Simulations. Wiley-Interscience. New York. 2001. 700p.

4.     Ishimaru A. Wave propagation and scattering in random media. Academic, New York, 1978; Mir, Moscow, 1981. Vol. 1. 280p.

5.     Cox S. J,, Reshetnyak V. Yu., Sluckin T. J. Effective medium theory of light scattering in polymer dispersed liquid crystal films. J. Phys. D: Appl. Phys., 1998, Vol.31, No.14, pp.1611-1625.

6.     Rozenberg G. V. Absorption spectroscopy of dispersed materials. Uspekhi fizicheskhih nauk, 1959, Vol. 69, No. 1. pp. 57-104. (In Russian)

7.     Barabanenkov Yu.N. Multiple scattering of waves by ensemble of particles and the radiative transpot. Soviet Physics Uspekhi, 1975, Vol.18, No. 9, pp. 673-689 DOI: 10.1070.PU1975v018n09ABEH005200

8.     Chen C.-T., Tsang L., Guo J., et. al. Frequency dependence of scattering and extinction of dense media based on three-dimensional simulations of Maxwell’s equations with applications to snow. IEEE Trans. Geosci. And Remote Sens., 2003, Vol.41, No.8, pp.1844-1852.

9.     Golunov V. A., Korotkov V. A., Sukhonin E. V. Effektyi rasseyaniya pri izluchenii millimetrovyih voln atmosferoy i snezhnyim pokrovom. [Scattering effects under the millimeter wave emission from atmosphere and snow cover]. Moscow, VINITI Publ. Itogi Nauki i Tekhn. Radiotekhnika, Vol. 41, 1990, pp. 68-136. (In Russian).

10.  Golunov V. A., Korotkov V. A., Sokolov A. V. Millimeter waves reflection and transmission in random discrete layer. Elektromagnitnye volny i elektronye sistemy, 1997, Vol. 2. No. 1. P. 39-46. (In Russian)

11.  Wiesman A., Mätzler C. Microwave emission model of layered snowpacks. Remote Sens. of Environment., 1999, Vol. 70, pp. 307-316.

12.  Pulliainen J. T., Grandell J., Hallikainen M. T. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. on Geosci. Remote Sens., 1999., Vol. GE-37., No. 3., pp.1378-1390.

13.  Golunov V. A. Thermal emission from dry homogeneous snow cover in the MM wave range. Uspekhy sovremennoy radioelektroniky, 2002, No. 6, pp. 35-44. (In Russian)

14.  Ishimaru A., Kuga Y. Attenuation constant of a coherent field in a dense distribution of particles. J. Opt. Soc. Am., 1982, Vol.72, No.10, pp. 1317-1320.

15.  Beard, C. L., Kays T. H., Twersky V. Scattering by randomly distribution of spheres vs. concentration. IEEE Trans. Antennas and Propag., 1967, Vol. AP-15. No.1, pp. 99–118.

16.  Hawley S. M., Kays T. H., Tversky V. Comparison of distribution functions from scattering data on different sets of spheres. IEEE Trans. Antennas and Propagation., 1967, Vol. AP-15, No.1, pp. 118-135.

17.  Varadan V. K., Bringi V. N., Varadan V. V. and Ishimaru A. Multiple scattering theory for waves in discrete random media and comparison with experiments. Radio Science, 1983, Vol.18, No.3, pp. 321 – 327.

18.  Golunov V.A. Coherent attenuation of electromagnetic waves by weakly absorbing dense random discrete (snow-like) media. Journal of communications technology and electronics, 2015, Vol. 60, No. 1, pp. 29–34.

19.  Golunov V. A., Barabanenkov Yu. N. Radiometric methods of measurement of the total reflectivity, the total transmissivity and the coherent transmissivity of a weakly absorbing random discrete medium layer in the millimeter wavelengths range. Proc. Progress in Electromagnetics Research Symp. Moscow, Russia, August 19-23, 2012. Electromagn. Acad., Cambridge, 2012, pp.1415-1418.

20.   Golunov V. A., Kuz’min A. V., Skulachev D.P., Khokhlov G.I. Experimentally obtained spectra of the millimeter waves' attenuation, absorption and scattering from dry fresh snow. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 9. Available at http://jre.cplire.ru/jre/sep16/4/text.pdf. (In Russian)

21.    Golunov V. A., Kuz’min A. V., Skulachev D. P., Khokhlov G. I. Experimental results on the frequency dependence of attenuation, scattering, and absorption of millimeter waves in a dry snow cover. Journal of Communications Technology and Electronics, 2017, Vol. 62, No. 9, pp. 951959.

22.    Andreev G. A., Golunov V. A, Sokolov A. V.  Rasseyanie i izluchenie millimetrovyih radiovoln prirodnyimi obrazovaniyami [Scattering and emission of millimeter radio waves from natural formations] Moscow, VINITI Publ. Itogi Nauki i Tekhn. Radiotekhnika, Vol. 20, 1980, pp. 39-106. (In Russian).

23.    Kubelka P. New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am., 1948, Vol. 38, No.5, pp. 448-457.

24.  Pan J., Durand M., Sandells M., et al. Differences between the HUT snow emission model and MEMLS and their effects on brightness temperature simulation. IEEE Trans. on Geosci. and Remote Sens., 2016, Vol. 54, Issue 4, pp. 2001–2019. DOI: 10.1109/TGRS.2015.2493505.

25.   Roy, V., Goïta K., Royer A., et. al. Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the TKK snow emission model. IEEE Trans. on Geosci. and Remote Sensing, 2004, Vol. GE-42, No. 9, pp. 1850.–1859.

26.     Tedesco M., Kim E. J. Intercomparison of electromagnetic models for passive microwave remote sensing of snow. IEEE Trans. on Geosci. and Remote Sensing, 2006, Vol. GE-44, No.10, pp. 2654-2664.

27.    Stogryn A. Correlation functions for random granular media in strong fluctuation theory. IEEE Trans. Geosci. and Remote Sensing, 1984, Vol. GE-22, No.2, pp.150-154.


For citation:

V. A. Golunov, G. I. Kchokchlov. The exponent of the frequency dependence of microwave backscattering from dry snow and artificial snow-like media. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 9. Available at http://jre.cplire.ru/jre/sep17/6/text.pdf. (In Russian)