"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 9, 2018

contents of issue      DOI  10.30898/1684-1719.2018.9.2     full text in Russian (pdf)  

Errors in the determination of electron density in solving the inverse problem of occultation of the Venusian daytime ionosphere


A. L. Gavrik

Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141190, Russia


The paper is received on August 31, 2018


Abstract. The analysis of errors in the determination of electron density in the daytime ionosphere of Venus based on the results of radio occultation and an assessment of the prospects for obtaining more accurate information about the properties of its ionosphere from the data of completed and planned missions are presented. The study was performed on the basis of the data of the Venus-9,-10,-15,-16 satellites and the simulation of the occultation experiment. According to the radio occultation experiments of completed missions, the vF2, vF1, vE, vD regions are identified in the daytime ionosphere of Venus, indicating the stratified structure of the ionosphere due to prevailing physical processes that are analogous to the processes in the terrestrial ionosphere layers F2, F1, E, D. Electron density calculations are based on the integration of data distorted by broadband noise. The simulation of the experiment showed that the error in determining the electron density in different regions of the ionosphere is different. The main source of error in the method of radio occultation is interplanetary plasma on the radio communication path if its influence on the parameters of the radio wave significantly exceeds the fluctuations in the amplitude, phase and frequency of the radio wave caused by the limited stability of the equipment and the low energy potential of the radio link. It is established that in the region of vD there will always be a maximum effect of factors that impair the reliability of the information on the ionosphere. To study the processes responsible for dynamic changes in the atmosphere-ionosphere system, it is necessary to increase the energy potential of the radio link in the planned mission of Venera-D. As a result, improved methods of data analysis will allow obtaining new information about Venus with good accuracy.

Keywords: radio wave propagation, occultation of ionosphere, fluctuations in frequency and power of radio waves.


1. N.A. Armand, Yu.V. Gulyaev, A.L. Gavrik et al. Results of solar wind and planetary ionosphere research using radiophysical methods. Physics-Uspekhi, 2010, Vol. 53, No. 5, P. 517-523.

2. L.S. Glaze, C.F. Wilson, L.V. Zasova,M. Nakamura, S. Limaye. Future of Venus Research and Exploration. Space Sci. Rev. 2018. Vol. 214. Is. 4. P. 89.

3. A.L. Gavrik, Yu.A. Gavrik, T.F. Kopnina. On the possibility of increasing the sensitivity of the radiooccultation method. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2011. No. 5. Available at http://jre.cplire.ru/jre/may11/3/text.pdf (In Russian)

4. A.L. Gavrik, Yu.A. Gavrik, T.F. Kopnina, and L. N. Samoznaev Amplitude and Frequency Variations of Coherent Radio Signals during Probing of the Daytime Venusian Ionosphere. Journal of Communications Technology and Electronics, 2010, Vol. 55, No. 3, P. 256-262.

5. N.A. Savich, S.L. Azarkh, A.S. Vyshlov et al. Frequency fluctuations of coherent radiosignals in the plasma around the sun: data from Venera 15, 16. Cosmic Research, 1987, Vol. 25, No. 2, P. 195-200.

6. Gavrik A.L. and Samoznaev L.N. Analysis of the errors in the results of radio probing of the dayside ionosphere of Venus caused by its nonsphericity. Cosmic Research, 1985, Vol. 23, No. 1, . 127-135.

7. G. Fjeldbo, A.J. Kliore, V.R. Eshleman. The Neutral Atmosphere of Venus as Studied with the Mariner V Radio Occultation Experiments. The Astronomical journal. 1971. Vol. 76. N. 2. P. 123-140.

8. G. Fjeldbo, B. Seidel, D. Sweetnam, T.Hovard. The Mariner 10 Radio Occultation Measurements of the Ionosphere of Venus. Journal of the Atmospheric Sciences. 1975. Vol. 32. N. 2. P. 1232-1236.

9. Gavrik A.L., Vyshlov A.S., O.N. Doroshchuk et al. Measurements of variations in the integrated electron density along the communication routes to Venera 13 and Venera 14. Cosmic Research. 1983. Vol. 21. No. 3. . 359-362.

10. N.A. Savich, V.E. Andreev, A.S. Vyshlov et al. The polar ionosphere of Venus near terminator from the "Venera-15,16" radio occultation data. Cosmic Research. 1986. Vol. 24. No. 3. P. 364-369.

11. A.J. Kliore, I.R. Patel, A.F. Nagy, T.E. Cravens, T.I. Gombosi. Initial Observations of the Nightside Ionosphere of Venus from Pioneer Venus Orbiter Radio Occultations. Science. 1979. Vol. 205, Is. 4401 P. 99-102

12. A.F. Nagy, T.E. Cravens, R.H. Chen, H.A. Taylor Jr., L.H. Brace, H.C. Brinton. Comparison of Calculated and Measured Ion Densities on the Dayside of Venus. Science. 1979. Vol. 205, Is. 4401 P. 107-109

13. S.J. Bauer, T.M. Donahue, R.E. Hartle, H.A. Taylor Jr. Venus Ionosphere: Photochemical and Thermal Diffusion Control of Ion Composition. Science. 1979. Vol. 205, Is. 4401 P. 109-112

14. Savich N.A., Gavrik A.L., Samoznaev L.N. The analysis of diffusion processes in the daytime ionosphere of Venus from the "Venera-9,10" radio occultation data. Cosmic Research. 1983. Vol. 21. No. 5. . 737-745.

15. Gavrik A.L., Pavelyev A.G., Gavrik Yu.A. Detection of ionospheric layers in the Daytime Ionosphere of Venus at Altitudes of 80-120 km from VENERA-15 and -16 Two-Frequency Radio-Occultation Results. Geomagnetism and Aeronomy, 2009, Vol. 49, No. 8, P. 1223-1225.

16. Brace L.H., Kliore A.J. The structure of the Venus ionosphere. Space Science Reviews. 1991. Vol. 55. Jan.-Feb. P. 81-163.

17. Jenkins, J.M., P.G. Steffes, D.P. Hinson et al. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft: 2. Results from the October 1991 experiments. Icarus. 1994. Vol. 110. P. 79-94.

18. J.-C. Gérard, S.W. Bougher, M.A. López-Valverde,M. Pätzold, P. Drossart, G. Piccioni. Aeronomy of the Venus Upper Atmosphere. Space Sci. Rev. 2017. Vol. 212. Is. 3-4. P. 16171683.

19. T. Imamura, H. Ando, S. Tellmann, M. Pätzold, B. Häusler, A. Yamazaki, T.M. Sato, K. Noguchi, Y. Futaana, J. Oschlisniok, S. Limaye, R.K. Choudhary, Y. Murata, H. Takeuchi, C. Hirose, T. Ichikawa, T. Toda, A. Tomiki, T. Abe, Z. Yamamoto, H. Noda, T. Iwata, S. Murakami, T. Satoh, T. Fukuhara, K. Ogohara, K. Sugiyama, H. Kashimura, S. Ohtsuki, S. Takagi, Y. Yamamoto, N. Hirata, G.L. Hashimoto, M. Yamada, M. Suzuki, N. Ishii, T. Hayashiyama, Y.J. Lee, M. Nakamura. Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth, Planets and Space. 2017. Vol. 69. Is. 1. P:137

20. P. Withers. Prediction of uncertainties in atmospheric properties measured by radio occultation experiments. Advances in Space Research. 2010. Vol.46. P.58-73

21. M. Patzold, S. Tellmann, B. Hausler et al. A sporadic layer in the Venus lower ionosphere of meteoric origin. Geophysical research letters. 2010. Vol. 36. P. L05203.


For citation:
A. L. Gavrik. Errors in the determination of electron density in solving the inverse problem of occultation of the Venusian daytime ionosphere. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 9. Available at http://jre.cplire.ru/jre/sep18/2/text.pdf

DOI  10.30898/1684-1719.2018.9.2