"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 9, 2019

contents of issue      DOI  10.30898/1684-1719.2019.9.1     full text in Russian (pdf)  

UDC 621.382.029

Calculation and measurement of thermal parameters of monolithic integrated  microwave circuits in X-band output power amplifiers.

 

V. A. Sergeev 1,2, R. G. Tarasov 2,3, A. M. Hodakov 1

1 Ulyanovsk branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Goncharova 48/2, Ulyanovsk 432071, Russia

2 Ulyanovsk State Technical University, Severny Venets 32, Ulyanovsk, 432027, Russia

3 JSC «NPP Zavod Iskra», prosp. Narimanova 75, Ulyanovks 432030, Russia

 

The paper is received on July 21, 2019

 

Abstract. The results of thermal 3D modeling in the software Comsol Multiphysics and calculation of temperature fields of the submodule of the output power amplifier (OPA) of the transmitting-receiving module (TRM) of the X-band active phased antenna array APAA, which contains two monolithic integrated circuits of GaAs microwave amplifiers with three amplification stages, are presented. The calculation of the temperature distribution on the surface of the MIC and on the surface of the mounting plate along the x-axis passing through the center of the third stage of the MIC amplification showed that the thermal connection between the MIC crystals as part of the MIC of the structure under consideration is weak and one-dimensional approximation can be used to estimate the thermal parameters of the MIC taking into account the expansion of the heat flux. Estimates of the thermal resistances of the submodule construction layers in this approximation have shown that a layer of contact bond material (adhesive) contributes primarily (more than 60%) to the full thermal resistances of the MIC. A method is proposed for  determining thermal resistance of a transition-housing of an MIC as part of a OPA based on the results of measuring temperature of the MIC at two levels of power dissipated by the OPA.

Keywords: APAA transceiver module, submodule of output power amplifier, GaAs microwave amplifier, monolithic integrated circuits, thermal modeling, temperature fields, thermal parameters, measurement.

References

1.  Vikulov I. Monolithic microwave integrated circuits. Elektronika: nauka, tekhnologiya, biznes [Electronics: Science, Technology, Business]. 2012.  No. 7.  P. 60–73. (In Russian)

2.  Krasnikov G. Ia., Volosov A.V., Kotliarov E.Iu. et al. X-Band transmit/receive module.  Elektronnaya tekhnika. Ser. 3. Mikroelektronika [Electronics devices. Series 3. Microelectronics].  2016.  No.3   P. 23–29.  (In Russian)

3.  Kolomeytsev V.A., Ezopov A.V., Semenov A.E. Thermal state of output power amplifier of receiving and transmitting module of active phased antenna array. Antenny [Àntennas]. 2012. No. 8 (183). P. 15–19. (In Russian)

4.  Kolomeytsev V.A., Ezopov A.V. The development of temperature control method of output power amplifier receiving and transmitting module active phased array. Bulletin of Saratov State Technical University.  2011. No. 1 (52), Issue 1.  P. 149–153. (In Russian)

5.  Sergeev V.A., Hodakov A.M., Tarasov R.G.  Modeling of transient thermal processes in output power amplifiers of AFAR modules.  Proceedings of International conference “Mathematical methods and models: theory, applications and role in education”.  Ulyanovsk. Ulyanovsk State Techncal University. 2016.  P. 133–137. (In Russian)

6. Sergeev V.A., Tarasov R.G., Kulikkov A.A. Sampling Distributions of Output Power Amplifiers of  X-Band Active Phased Array Antennas on Power Parameters. Izvestiya VUZov. Elektronika [Proceedings of Universities. Electronics].  2018.  Vol. 23, No. 1.   P. 93–98. (In Russian)

7. Sergeev V.A., Hodakov A.M. Nelineynyye teplovyye modeli poluprovodnikovykh izdeliy [Nonlinear Thermal Models of Semiconductor Devices]. Ulyanovsk. Ulyanovsk State Technical University. 2012. 153 ð. (In Russian)

8. Carslaw H. S.,  Jaeger, J. C. (1980). Conduction of Heat in Solids. Oxford. Oxford University Press. 1980.

9. NSM Archive – Physical Properties of Semiconductors [online resource]. URL: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html

10. Sergeev V.A.  Analysis of Thermal Regime Power Light Emitting Diodes in LED's Modules.  Izvestiya VUZov. Elektronika [Proceedings of Universities. Electronics].  2013. No.1.  P. 85–87. (In Russian)

11 OST 11 0944-96 Integrated chips and semiconductor devices. Methods of calculation, measurement and control of thermal resistance.  Moscow. “Pulsar” GNPP, 1997. (In Russian)

12. GOST 19656.15-84 Microwave semiconductor diodes. Methods of measuring thermal resistance transition-case and pulsed thermal resistance. Moscow. Standards Publ. 1984. (In Russian)

13. Dupont L., Avenas Y., Jeannin P. Comparison of Junction Temperature Evaluations in a Power IGBT Module Using an IR Camera and Three Thermosensitive Electrical Parameters.  IEEE Transaction on Industrial Applications.  2013.  Vol. 49. No. 4. P. 1599–1608.

14. Sergeev V.A., Smirnov V.I., Tarasov R.G.  Problems and capabilities of diagnostics of quality of electronic modules by thermal characteristics.  Avtomatizatsiya protsessov upravleniya [Automation of Control Processes]. 2017. No 4 (50). P. 108116. (In Russian)

 

For citation:

V. A. Sergeev, R. G. Tarasov, A. M. Hodakov. Calculation and measurement of thermal parameters of monolithic integrated microwave circuits in X-band output power amplifiers. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 9. Available at http://jre.cplire.ru/jre/sep19/1/text.pdf

DOI  10.30898/1684-1719.2019.9.1