Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №9
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.9.2

 

SATELLITE NAVIGATION SYSTEMS

AS A SOURCE FOR DETERMINING THE FEATURES

OF THE RADIO WAVES PROPAGATION

ALONG IONOSPHERIC RADIO LINES

 

V.M. Smirnov, E.V. Smirnova

 

Kotelnikov IRE RAS, Fryazino branch

141190, Russia, Fryazino, pl. Vvedenskogo, 1

 

The paper was received  July 21, 2022.

 

Abstract. The main space-time characteristics of inhomogeneities arising in ionospheric plasma are given. The models of the ionospheric radio channel are shown taking into account the inhomogeneities of large, medium and small scales for navigation satellite systems. The results of measurements and data processing of these systems are presented. It is shown that ionospheric inhomogeneities arising on the propagation path can lead to strong signal fading. According to the depth of fading, scintillation indices are determined, the values of which allow them to be attributed to the class of weak-medium fading. The use of the second derivative phase of navigation signals made it possible to attribute these inhomogeneities to the class of small-scale ones.

Key words: ionosphere, navigation satellites, inhomogeneities, scintillations.

Financing: The work was carried out within the framework of the state task of the Kotelnikov IRE RAS.

Corresponding author: Smirnov Vladimir Mikhajlovich, vsmirnov@ire.rssi.ru

References

1. Kolosov M.A., Armand N.A, Yakovlev O.I. Rasprostranenie radiovoln pri kosmicheskoj svyazi [Radiowaves propagation in space communications]. Moscow, Svyaz' Publ. 1969. 155 p. (In Russian)

2. Devis K. Radiovolny v ionosphere [Radiowaves in the ionosphere]. Moscow, Mir Publ. 1973. 502 p. (In Russian)

3. Cherenkova E.L., Chernyshov O.V. Rasprostranenie radiovoln [Radiowaves propagation]. Moscow, Radio i svyaz' Publ. 1984. 272 p. (In Russian)

4. Pashincev V.P., Solchatov M.E., Gahov R.P. Vliyanie ionosfery na harakteristiki kosmicheskih sistem peredachi informacii: monografiya [The influence of the ionosphere on the characteristics of space information transmission systems]. Moscow, Radio i svyaz' Publ. 2006. 184 p. (In Russian)

5. Afrajmovich E.L., Perevalova N.P. GPS-monitoring verhnej atmosfery Zemli [GPS-monitoring of the Earth’s upper atmosphere]. Irkutsk, SC RRS SB RAMS. 2006. 480 p. (In Russian)

6. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Ionospheric Physics]. Moscow, Nauka Publ. 1988. 528 p. (In Russian)

7. Tashchilin A.V. Formirovanie krupnomasshtabnoj struktury ionosfery v spokojnyh i vozmushchennyh usloviyah [Formation of a large-scale structure of the ionosphere in calm and disturbed conditions]. Dissertation for the Doctor of Physical and Mathematical Sciences. Institute of Solar-Terrestrial Physics of the Siberian Branch of the RAS. Irkutsk. 2014. 265 p. (In Russian)

8. Wang M., Ding F., Wan W. et al. Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms. Earth Planet Space. 2007. V.59. P.407-419. https://doi.org/10.1186/BF03352702

9. Kravcov YU.A., Fejzulin Z.I., Vinogradov A.G. Prohozhdenie radiovoln cherez atmosferu Zemli [The passage of radio waves through the Earth's atmosphere]. Moscow, Radio i svyaz' Publ. 1983. 224 p. (In Russian)

10. Hussey G.C., Schlegel K., Haldoupis C. Simultaneous 50-MHz coherent backscatter and digital ionosonde observations in the midlatitude E region. Journal Geophysical Research. 1998. V.103. №4. P.6991-7001. https://doi.org/10.1029/97ja03089

11. Tsunoda, R., Yamamoto, M., Igarashi, K., et al. Quasiperiodic Radar Echoes from Midlatitude Sporadic E and Role of the 5-Day Planetary Wave. Geophysical Research Letters. 1998. V.25. №7. P.951-954. https://doi.org/10.1029/98GL00663

12. Voiculescu M., Haldoupis C., Schlegel K. Evidence for planetary wave effects on midlatitude backscatter and sporadic E layer occurrence. Geophysical Research Letters. 1999. V.26. P.1105-1108. https://doi.org/10.1029/1999GL900172

13. Pashincev V.P., Peskov M.V., Smirnov V.M., Smirnova E.V., Tynyankin S.I. Procedure for Extraction of Small-Scale Variations in the Total Electron Content of the Ionosphere with the Use of Transionospheric Sounding Data. Journal of Communications Technology and Electronics. 2017. V.62. №12. P.1336-1342. https://doi.org/10.1134/S1064226917110158

14. Nazarov L.E., Antonov D.V., Batanov V.V., Zudilin A.S., Smirnov V.M. The scintillation models for signal propagation through sattellite ionospheric channels. Radioelektronika. Nanosistemy. Informacionnye tekhnologii [Radioelectronics. Nanosystems. Information Technologies]. 2019. T.11. №1. P.57-64. https://doi.org/10.17725/rensit.2019.11.057 (In Russian)

15. Nazarov L.E., Smirnov V.M. Estimation of signal reception probability characteristics using models of fading transionosphere channels. Zhurnal radioelektroniki [Journal of Radioelektronics] [online]. 2020. №11. https://doi.org/10.30898/1684-1719.2020.11.7 (In Russian)

16. Nazarov L.E., Smirnov V.M. The error-performances of fading signals propagated through the ionospheric satellite channels. Fizicheskie osnovy priborostroeniya [Physical Bases of Instrumentation]. 2020. V.9. №4(38). P.18-23. https://doi.org/10.25210/jfop-2004-018023  (In Russian)

17. Yakovlev O.I., Yakubov V.P., Uryadov V.P., Pavel'ev A.G. Rasprostranenie radiovoln [Radiowaves propagation]. Moscow, LENAND Publ. 2009. 496 p. (In Russian)

18. Kuz'min A.K., Merzlyj A.M., Ban'shchikova M.A., CHuvashov I.N., Kruchenickij G.M., Potanin YU.N., Moiseev P.P. Applied aspects of measurements of auroral emissions and characteristics of the polar ionosphere by the imager "AVROVIZOR-VIS/MP" on the perspective spacecraft "Meteor-MP". Chetvertaya mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Aktual'nye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli» [The fourth international scientific and technical conference "Actual problems of creation of space systems of remote sensing of the Earth"]. Moscow. 2016. P.325-341. (In Russian)

19. Kintner P.M., Ladvina B.M., Paula E.R. GPS and ionospheric scintillations. Space Weather. 2007. V.5. https://doi.org/10.1029/2006SW000260

20. Datta-Barua S., Doherty P.H., Delay S.H. Ionospheric scintillation effects on single and dual frequency GPS Positioning. Proceeding of the ION GPS 2003. Portland. 2003. P.336-346.

21. Recommendation ITU-R P.531-14 (08/2019). Ionospheric propagation data and prediction methods required for the design of satellite services and systems. 2019. 25 p.

22. Kashkina T.V., Dem'yanov V.V., Yasyukevich Yu.V. The second time derivative of phase as an indicator of the ionosphere fine structure. Trudy XIV Konferentsii molodykh uchenykh «Vzaimodeistvie polei i izlucheniya s veshchestvom». Fizika okolozemnogo kosmicheskogo prostranstva [Proceedings of the XIV Conference of Young Scientists "Interaction of fields and radiation with matter". Physics of near-Earth space]. Irkutsk. 2015. P.115-117. (In Russian)

23. Smirnov V.M., Smirnova E.V., Sekistov V.N., Mal'kovskii A.P., Tynyankin S.I. Propagation of short radio waves and the potential of the earth's ionosphere radio-sounding method for calculation of maximum usable frequencies. Journal of Communications Technology and Electronics. 2008. V.53. №9. P.1052-1059. https://doi.org/10.1134/S1064226908090064

For citation:

Smirnov V.M., Smirnova E.V. Satellite navigation systems as a source for determining the features of the radio waves propagation along ionospheric radio lines. Zhurnal radioelektroniki [Journal of Radioelectronics] [online]. 2022. №9. https://doi.org/10.30898/1684-1719.2022.9.2 (In Russian)