Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. 9
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.9.3

 

ISSUE OF ASSESSING THE RELIABILITY

OF SUPERLUMINESCENT DIODES

 

F.M. Makoveev

 

ANTARES

410012, Russia, Saratov

Radishcheva str., 27

 

 

The paper was received June, 16, 2023

 

Abstract. A superluminescent diode (SLED or SLD) are used in low coherence tomography and in fiber-optic gyroscopes, where sources with a short coherence length and relatively high radiation power are required. SLED are, as a rule, the least reliable, and at the same time, extremely important for ensuring operability device. The article discusses the issue of resource reliability of the SLED to analyze the possibility of improving the accuracy of devices based on them during long-term operation. The work is a brief overview of achievements in the field of resource reliability analysis of quantum optical semiconductor devices, obtaining a general representation of the reliability of superluminescent radiation sources, changes in their parameters as a result of degradation, consideration of ways to solve problems associated with their spectral degradation.

Key words: superluminescent diode, reliability, lifetime tests, 1/f noise, Arrhenius equation.

Corresponding author: Makoveev Fedor Michailovich, makoveev33@gmail.com


References

1. Alphonse, G.A. (1989). Superluminescent diode (U.S. Patent No. 4,821,276).

2. Ko, Y. U., Yun, H. J., Jeong, K. S., Kim, Y. M., Yang, S. D., Kim, S. H., ... & Lee, G. W. (2016). Current–voltage and low-frequency noise analysis of heterojunction diodes with various passivation layers. Thin Solid Films, 598, 109-114.

3. Hu, G., Shi, J., Shi, Y., Yang, X., & Li, J. (2003). An improved method and experimental results of noise used as reliability estimation for semiconductor lasers. Optics & Laser Technology, 35(6), 481-483.

4. Kleinpenning, T. G. M. (1980). 1f Noise in pn diodes. Physica B+ C, 98(4), 289-299.

5. Konczakowska, A. (1995). Quality and 1/f noise of electronic components. Quality and Reliability Engineering International, 11(3), 165-169.

6. Black, J. R. (1969). Electromigration failure modes in aluminum metallization for semiconductor devices. Proceedings of the IEEE, 57(9), 1587-1594.

7. Huang, J. S. (2005). Temperature and current dependences of reliability degradation of buried heterostructure semiconductor lasers. IEEE Transactions on device and materials reliability, 5(1), 150-154.

8. Wang, L., Li, X., Jiang, T., & Wan, B. (2009, July). SLD constant-stress ADT data analysis based on time series method. In 2009 8th International Conference on Reliability, Maintainability and Safety (pp. 1313-1317). IEEE.

9. Kashima, Y., Matoba, A., & Takano, H. (1992). Performance and reliability of InGaAsP superluminescent diode. Journal of lightwave technology, 10(11), 1644-1649.

10. Chao, D., Ma, J., & Li, X. (2009, July). Research on the reliability of SLD through accelerated life testing. In 2009 8th International Conference on Reliability, Maintainability and Safety (pp. 1263-1267). IEEE.

11. Mamedov, D. S., Prokhorov, V. V., Shramenko, M. V., & Yakubovich, S. D. (2002). Issledovanie kharakteristik izlucheniya malomoshchnykh superlyuminestsentnykh diodov v diapazone temperatur – 55 C...+ 93 C. Kvantovaya ehlektronika, 32(7), 593-596.

12. Lobintsov, P. A., Mamedov, D. S., & Yakubovich, S. D. (2006). Resursnye ispytaniya superlyuminestsentnykh diodov. Kvantovaya ehlektronika, 36(2), 111-113.

13. Andreeva, E. V., Il'chenko, S. N., Kostin, YU. O., Lapin, P. I., Mamedov, D. S., & Yakubovich, S. D. (2011). Izmenenie vykhodnykh kharakteristik shirokopolosnykh superlyuminestsentnykh diodov v khode prodolzhitel'noi raboty. Kvantovaya ehlektronika, 41(7), 595-601.

14. Kholin, A.A., Lastovkin, A. A., Klimov, A. N., Martynov, A. V., Lebedev, V. A. (2020). Termostabilizatsiya lazernogo diodnogo modulya s pomoshch'yu ehlementov Pel't'e. XII Vserossiiskaya shkola dlya studentov, aspirantov, molodykh uchenykh i spetsialistov po lazernoi fizike i lazernym tekhnologiyam: Sbornik dokladov, 152-158.

15. Waters, R. G. (1991). Diode laser degradation mechanisms: a review. Progress in Quantum Electronics, 15(3), 153-174.

16. Eliseev, P. G. (1996). Optical strength of semiconductor laser materials. Progress in quantum electronics, 20(1), 1-82.

17. Schmidt, G. T. (2004). INS/GPS technology trends, advances in navigation sensors and integration technology. NATO RTO Lecture series, 232.

18. Izmailov, E. A. (2010). Sovremennye tendentsii razvitiya tekhnologii inertsial'nykh chuvstvitel'nykh ehlementov i sistem letatel'nykh apparatov. Trudy FGUP» NPTSAP». Sistemy i pribory upravleniya, (1), 30-43.

19. Schmidt, G. T. (2011). INS/GPS technology trends. Low-Cost Navigation Sensors and Integration Technology (pp. 1-24). NATO RTO-EN-SET-116-2011, 28–29 March 2011, Bagneux, France.

20. Passaro, V. M., Cuccovillo, A., Vaiani, L., De Carlo, M., & Campanella, C. E. (2017). Gyroscope technology and applications: A review in the industrial perspective. Sensors, 17(10), 2284.

21. Peshekhonov, V. G. (2020). Perspektivy razvitiya giroskopii. Giroskopiya i navigatsiya, 28(2 (109)), 3.


 For citation:

Makoveev F.M. Issue of assessing the reliability of superluminescent diodes. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №. 9. https://doi.org/10.30898/1684-1719.2023.9.3 (In Russian)