Journal of Radio Electronics. eISSN 1684-1719. 2025. №9

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.9.4

 

 

 

Statistics of Precipitated Water Vapor

at New Astronomical Points

in Northeastern Eurasia

 

V.B. Khaikin 1,7, A.P. Mironov 2, A.Y. Shikhovtsev 3, G.A. Makoev 1,7,

Y.O. Vodzyanovsky 4,7, A.V. Khudchenko 4,5, Pavel M. Zemlyanukha 6, E.A. Kopylov 7

 

1 Special Astrophysical Observatory of the Russian Academy of Sciences,
Nizhny Arkhyz, Russia

2 Sternberg State Astronomical Institute, Lomonosov Moscow State University, Moscow, Russia

3 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia

4 LPI Astro Space Center, Moscow, Russia

5 Kotelnikov IRE RAS, Moscow, Russia

6 Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS),
Nizhny Novgorod, Russia

7 Institute of Astronomy of the Russian Academy of Sciences (INASAN),
Moscow, Russia

 

The paper was received May 23, 2025.

 

Abstract. In the work using the GNSS method, monthly statistics of precipitated water vapor were obtained at new astronomical points in northeastern Eurasia: Hulugaisha Peak (Eastern Sayan), Kurapdag in the Agul District of Dagestan and the Tashanta checkpoint in the intermountain basin of the Altai Republic in comparison with the area of BTA, KGO and Terskol Peak Observatory. Changes in the hourly values of the median of precipitated water vapor at the Hulugaisha peak, the Tashanta APP and around BTA location are given according to the data of Era-5 reanalysis and moisture content in the surface layer according to meteorological data of 2023-2024. The collection of statistics of the optical thickness and precipitated water vapor in the area of BTA and new astronomical stations began with the help of a two-channel atmospheric radiometer IPAR-2 at a wave of 3 mm and 2 mm.

Keywords: submillimeter telescope, astroclimate, precipitable water vapor, optical thickness, radiometric method, GNSS method, Era-5 reanalysis.

Financing: This work was supported by the RSF grant N23-72–00041.

Corresponding author: Khaikin Vladimir Borisovich, vkhstu@mail.ru

 

References

1. Bubnov G.M. et al. Searching for new sites for THz observations in Eurasia // IEEE Transactions on Terahertz Science and Technology. – 2015. – Т. 5. – №. 1. – С. 64–72.

2. V.B. Khaikin, A. Yu. Shikhovtsev, A.P. Mironov and Xuan Qian; POS, 072, 8 (2022).

3. Балега Ю.Ю и др. Прямые измерения атмосферного поглощения излучения субтерагерцового диапазона волн на Северном Кавказе // Доклады Российской академии наук. 2022. Т. 502, № 1. С. 5–9. https://doi.org/10.31857/S2686740022010023. – [Direct Measurements of Atmospheric Absorption of Subterahertz Wave Range Radiation in the North Caucasus]

4. Rudakov K.I. et al. Low-noise sis receivers for new radio-astronomy projects // Radiophysics and Quantum Electronics. – 2019. – Т. 62. – С. 547-555.

5. Балега Ю.Ю и др. Сверхпроводниковые приемники для космических, аэростатных и наземных субтерагерцовых радиотелескопов // Известия вузов. Радиофизика. – 2020. – Т. 63. – №. 7. – С. 533–566. – [Superconducting receivers for space, balloon and ground-based subterahertz radio telescopes]

6. Raymond A.W. et al. Evaluation of new submillimeter VLBI sites for the Event Horizon Telescope // The Astrophysical Journal Supplement Series. – 2021. – Т. 253. – №. 1. – С. 5.

7. Li J. et al. A 15-m Submillimeter-Wave Telescope (XSMT) and Its Development. 33rd IEEE International Symposium on Space THz Technology (ISSTT 2024), April 7-11, 2024.

8. Deng L. et al. Lenghu on the Tibetan Plateau as an astronomical observing site // Nature. – 2021. – Т. 596. – №. 7872. – С. 353–356.

9. Bi C. et al. Astroclimatic parameters characterization at Lenghu site with ERA5 products // Monthly Notices of the Royal Astronomical Society. – 2024. – Т. 527. – №. 3. – С. 4616-4631.

10. Shikhovtsev A.Y. et al. Precipitable water vapor and fractional clear sky statistics within the Big Telescope Alt-Azimuthal region // Remote Sensing. – 2022. – Т. 14. – №. 24. – С. 6221.

11. Шиховцев А.Ю. и др. Статистический анализ содержания водяного пара на Северном Кавказе и в Крыму // Оптика атмосферы и океана. – 2022a. – Т. 35. – №. 1. – С. 67–73. – [Statistical Analysis of Water Vapor Content in the North Caucasus and Crimea]

12. Zinchenko I.I. et al. Measurements and Evaluations of the Atmospheric Transparency at Short Millimeter Wavelengths at Candidate Sites for Millimeter-and Sub-Millimeter-Wave Telescopes // Applied Sciences. – 2023. – Т. 13. – №. 21. – С. 11706.

13. Хайкин В.Б. и др. Статистические характеристики осажденного водяного пара, оптической толщи и облачности в Северной части Евразии. Астрономический журнал, 2024a, том 101, № 2, с. 195–206. – [Statistical Characteristics of Precipitated Water Vapor, Optical Thickness and Cloudiness in Northern Eurasia]

14. Шиховцев А.Ю. и др. Оптическая толща атмосферы для пика Терскол по данным реанализа Era-5. Оптика атмосферы и океана, N11, 2022b. – [Optical Atmospheric Thickness for Terskol Peak from Era-5 Reanalysis Data]

15. Shikhovtsev A.Y., Kovadlo P.G. Statistical estimations of the vapor content and optical thickness of the atmosphere using reanalysis and radiosonding data as applied to millimeter telescopes // Optika Atmosfery i Okeana. – 2024. – Т. 37. – №. 2. – С. 169-175.

16. Bevis M. et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system // Journal of Geophysical Research: Atmospheres. – 1992. – Т. 97. – №. D14. – С. 15787-15801.

17. Boehm J., Werl B., Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data // Journal of geophysical research: solid earth. – 2006. – Т. 111. – №. B2.

18. Herring T.A. et al. Introduction to gamit/globk // Massachusetts Institute of Technology, Cambridge, Massachusetts. – 2010. – Т. 400. – С. 401.

19. Хайкин В.Б. и др. Первые результаты измерения пропускания атмосферы в местах расположения РАТАН-600, БТА и ЗТШ с помощью двухканального атмосферного радиометра ИПАП-2. ЖРЭ в печати, 2025. – [First Results of Atmospheric Transmittance Measurement at RATAN-600, BTA and ZTSh Locations Using the IPAP-2 Two-Channel Atmospheric Radiometer]

20. Clark T.A., Irwin G. Atmospheric Water Vapour at Mt. Kobau and Calgary and its Relevance to Infrared Astronomical Measurements // The Journal of the Royal Astr. Soc. of Canada. 67, N3 (522), 1973, p.142.

21. Бертенова О.Д. и др. О спектральной прозрачности и содержании пара над Памиром. Труды ГГО N237, 1979. – [On Spectral Transparency and Vapor Content over the Pamirs]

22. Fogarty W. Total atmospheric absorption at 22.2 GHz // IEEE Transactions on Antennas and Propagation. – 1975. – Т. 23. – №. 3. – С. 441-444.

For citation:

Khaikin V.B., Mironov A.P., Shikhovtsev A.Y., Makoev G.A., Vodzyanovsky Y.O., Khudchenko A.V., Zemlyanukha Pavel M., Kopylov E.A. Statistics of precipitated water vapor at new astronomical points in northeastern Eurasia // Journal of Radio Electronics. – 2025. – №. 9. https://doi.org/10.30898/1684-1719.2025.9.4 (In Russian)