Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹9
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.9.6
Photoconductive terahertz antennas
based on GaN {LT-InxGa1−xN/GaN}
E.R. Burmistrov1,2, L.P. Avakyants1, N.A. Parfent’eva2, S.N. Gavrilin2
1 M.V. Lomonosov Moscow State University,
Department of General Physics, Faculty of Physics
119991, Russia, Moscow, Leninskie Gory, 1, bld. 22 Moscow State University of Civil Engineering,
Institute of Digital Technologies and Modeling in Construction,
Department of General Physics
129337, Russia, Moscow, Yaroslavskoye Shosse, 26
The paper was received June 3, 2025.
Abstract. A material in the form of a multilayer structure based on LT-GaN grown on Al2O3 sapphire substrates with a crystallographic direction (0001) is proposed for the manufacture of terahertz photoconductive antennas. The structures contain active layers of InxGa1−xN/GaN. The mole fraction In in the InxGa1−xN quantum well region is chosen to be 0.42. At an optical pumping power of 57 MW and a bias voltage of 15 V, a photoconductive antenna on an optimized {LT-InxGa1−xN/GaN} structure emits terahertz pulses with an average power of 4.5 µW at a laser pulse repetition rate of 60 MHz. Time profiles and frequency spectra of Fourier amplitudes of terahertz pulses generated using LT-GaN-based antennas have been obtained.
Keywords: photoconductive antennas, gallium nitride, terahertz radiation, optical pumping, time forms.
Corresponding author: E.R. Burmistrov, burmistrover@my.msu.ru
References
1. Yeritsyan H. N. et al. In-Situ Study of Non-Equilibrium Charge Carriers’ Behavior under Ultra-Short Pulsed Electrons Irradiation in Silicon Crystal //Journal of Modern Physics. – 2019. – Ò. 10. – ¹. 9. – Ñ. 1125-1133. https://doi.org/10.1088/0022-3727/43/27/273001
2. Burford N. M., El-Shenawee M. O. Review of terahertz photoconductive antenna technology //Optical Engineering. – 2017. – Ò. 56. – ¹. 1. – Ñ. 010901-010901. https://doi.org/10.1117/1.OE.56.1.010901
3. Pashnev D. et al. Investigation of two-dimensional plasmons in grating-gated AlGaN/GaN heterostructures with terahertz time domain spectrometer //2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2020. – Ñ. 1-1. https://doi.org/10.1109/IRMMW-THz46771.2020.9370916
4. Yang S. H. et al. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes //IEEE Transactions on Terahertz Science and Technology. – 2014. – Ò. 4. – ¹. 5. – Ñ. 575-581. https://doi.org/10.1109/TTHZ.2014.2342505
5. Castro-Camus E., Alfaro M. Photoconductive devices for terahertz pulsed spectroscopy: a review //Photonics Research. – 2016. – Ò. 4. – ¹. 3. – Ñ. A36-A42. https://doi.org/10.1364/PRJ.4.000A36
6. Kuznetsov K. et al. Improved InGaAs and InGaAs/InAlAs photoconductive antennas based on (111)-oriented substrates //Electronics. – 2020. – Ò. 9. – ¹. 3. – Ñ. 495. https://doi.org/10.3390/electronics9030495
7. Frankel M. Y. et al. High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs //IEEE transactions on electron devices. – 2002. – Ò. 37. – ¹. 12. – Ñ. 2493-2498. https://doi.org/10.1109/16.64523
8. Valdmanis J., Mourou G., Gabel C. Subpicosecond electrical sampling //IEEE Journal of Quantum Electronics. – 1983. – Ò. 19. – ¹. 4. – Ñ. 664-667. https://doi.org/10.1117/12.966086
9. Liu X. et al. All-fiber femtosecond Cherenkov radiation source //Optics letters. – 2012. – Ò. 37. – ¹. 13. – Ñ. 2769-2771. https://doi.org/10.1364/OL.37.002769
10. Zeng L. et al. Characteristics comparison of SiC and GaN extrinsic vertical photoconductive switches //IEEE Journal of the Electron Devices Society. – 2024. https://doi.org/10.1109/JEDS.2024.3372596
11. Xu G. et al. Investigation of terahertz generation due to unidirectional diffusion of carriers in centrosymmetric GaTe crystals //IEEE Journal of Selected Topics in Quantum Electronics. – 2010. – Ò. 17. – ¹. 1. – Ñ. 30-37. https://doi.org/10.1109/JSTQE.2010.2046628
12. Saleem M. F. et al. Factors Affecting Terahertz Emission from InGaN Quantum Wells under Ultrafast Excitation //International Journal of Optics. – 2023. – Ò. 2023. – ¹. 1. – Ñ. 5619799. https://doi.org/10.48550/arXiv.2404.02398
13. Greene B. I. et al. Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation //Optics letters. – 1991. – Ò. 16. – ¹. 1. – Ñ. 48-49. https://doi.org/10.1364/OL.16.000048
14. Wang Z. et al. Non-destructive evaluation of thermally grown oxides in thermal barrier coatings using impedance spectroscopy //Journal of the European Ceramic Society. – 2019. – Ò. 39. – ¹. 15. – Ñ. 5048-5058. https://doi.org/10.1016/j.jeurceramsoc.2019.06.053
15. Yoneda H. et al. High-power terahertz radiation emitter with a diamond photoconductive switch array //Applied Optics. – 2001. – Ò. 40. – ¹. 36. – Ñ. 6733-6736. https://doi.org/10.1364/AO.40.006733
16. Chizhov P. A. et al. Photoconductive terahertz generation in nitrogen-doped single-crystal diamond //Optics Letters. – 2021. – Ò. 47. – ¹. 1. – Ñ. 86-89. https://doi.org/10.1364/OL.446750
17. Burmistrov E. R., Avakyants L. P. Terahertz Time-Domain Spectroscopy (THz-TDS) of LED Heterostructures with Three and Five In x Ga1–x N/GaN Quantum Wells //Journal of Experimental and Theoretical Physics. – 2023. – Ò. 136. – ¹. 5. – Ñ. 593-604. https://doi.org/10.1134/S1063776123050072
18. Eljarrat A. et al. Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS //Physical Chemistry Chemical Physics. – 2016. – Ò. 18. – ¹. 33. – Ñ. 23264-23276. https://doi.org/10.1039/C6CP04493J
19. O'leary S. K. et al. Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: a review //Journal of Materials Science: Materials in Electronics. – 2006. – Ò. 17. – Ñ. 87-126. https://doi.org/10.1007/s10854-006-5624-2
20. Ponomarev D.S., et all. Elektricheskie i teplovye svojstva fotoprovodyashchih antenn na osnove In[x]Ga[1-x]As (x > 0.3) s metamorfnym bufernym sloem dlya generacii teragercovogo izlucheniya. // Fizika i tekhnika poluprovodnikov. – 2017. – V. 12. http://doi.org/10.21883/FTP.2017.09.44893.8508
For citation:
Burmistrov E.R., Avakyants L.P., Parfent’eva N.A., Gavrilin S.N. Photoconductive terahertz antennas based on GAN {LT-INXGA1-XN/GAN}. // Journal of Radio Electronics. – 2025. – ¹. 9. https://doi.org/10.30898/1684-1719.2025.9.6 (In Russian)