Journal of Radio Electronics. eISSN 1684-1719. 2025. №9
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.9.8
Static and Dynamic Electroelastic Analysis
of Tactile Polymer Coating
with Integrated Fiber Optic
Piezo-Electroluminescent Sensor
A.A. Pan’kov
Perm National Research Polytechnic University,
614990, Russia, Perm, Komsomolsky ave., 29
The paper was received June 11, 2025.
Abstract. A mathematical electro-mechanical model of functioning of a tactile polymer coating in form of a polymer substrate with a spiral of a fibre-optic piezoelectric luminescent sensor attached to the surface with point force interaction with the analysed object is developed. Algorithm of external single impact location is proposed. For a representative fragment of the "substrate/sensor" system, calculations and diagrams of voltages and electrical potentials in the sensor under static generalized force effect were calculated and constructed. Results of calculation of frequency dependencies of real and imaginary parts of informative transfer coefficients are presented, which establish functional connection between sought values of acting external single-point generalized forces and values of arising voltages on electroluminescent elements of sensor, taking into account Maxwell-Wagner relaxation of electric fields in piezoelectric and electroluminescent elements of sensor under harmonic generalized force action. The modal analysis is represented by the first six natural frequencies and modes of the representative fragment of the "substrate/sensor" system found. For each of the six wave forms, the longitudinal coordinate distributions of the voltage amplitudes for all six sectors of the sensor are calculated; these relationships determine the shapes of the light pulses measured at the output of the sensor light guide.
Key words: tactile coating, fiber optic sensor, piezo-electroluminescence, electroelasticity, Maxwell-Wagner relaxation, modal analysis, numerical modeling.
Financing: The results were obtained within the framework of the State task of the Ministry of Science and Higher Education of the Russian Federation (project no FSNM-2023-0006).
Corresponding author: Pan'kov Andrei Anatol'evich, a_a_pankov@mail.ru
References
1. Wang X., Sun F., Yin G., Wang Y., Liu B., Dong M. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors. 2018. V. 18. № 2. P. 1-16. https://doi.org/10.3390/s18020330
2. Lu K., Huang W., Guo J., et al. Ultra-sensitive strain sensor based on flexible poly(vinylidene fluoride) piezoelectric film. Nanoscale Research Letters. 2018. V. 13. № 83. P. 1-6. https://doi.org/10.1186/s11671-018-2492-7
3. Koiva R., Zenker M., Schurmann C., Haschke R., Ritter H.J. A highly sensitive 3D-shaped tactile sensor. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, Australia. 9-12 July 2013. P.1084-1089. https://doi.org/10.1109/AIM.2013.6584238
4. Yousef H., Boukallel M., Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics - A review. Sensors and Actuators A: Physical. 2011. V. 167. P. 171-187. https://doi.org/10.1016/j.sna.2011.02.038
5. Kappassov Z., Corrales J.-A., Perdereau V. Tactile sensing in dexterous robot hands - Review. Robotics and Autonomous Systems. 2015. V. 74. P. 195-220. https://doi.org/10.1016/j.robot.2015.07.015
6. Oddo C.M., Beccai L., Felder M., Giovacchini F., Carrozza M.C. Artificial roughness encoding with a bio-inspired MEMS-based tactile sensor array. Sensors. 2009. V. 9. № 5. P. 3161-3183. https://doi.org/10.3390/s90503161
7. Kolesar Jr E.S., Dyson C.S. Object imaging with a piezoelectric robotic tactile sensor. IEEE Journal of Micro-electromechanical Systems. 1995. V. 4. № 2. P. 87-96. https://doi.org/10.1109/NAECON.1993.290890
8. Drimus A., Petersen M.B., Bilberg A. Object texture recognition by dynamic tactile sensing using active exploration. Proceedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication. Paris, France. 9-13 September 2012. P. 277-283.
9. Zhang T., Liu H., Jiang L., Fan S., Yang J. Development of a flexible 3-D tactile sensor system for anthropomorphic artificial hand. IEEE Sensors Journal. 2013. V. 13. P. 510-518.
10. Lee H.-K., Chung J., Chang S.-I., Yoon E. Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. IEEE Journal of Micro-electromechanical Systems. 2008. V. 17. № 4. P. 934-942. https://doi.org/10.1109/JMEMS.2008.921727
11. Liang G., Wang Y., Mei D., Xi K., Chen Z. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for Three-Axis force measurement. IEEE Journal of Micro-electromechanical Systems. 2015. V. 24. № 5. P. 1510-1519. https://doi.org/10.1109/JMEMS.2015.2418095
12. Iwasaki T., Takeshita T., Arinaga Y., Uemura K., Ando H., Takeuchi S., Furue M., Higurashi E., Sawada R. Shearing force measurement device with a built-in integrated micro displacement sensor. Sensors and Actuators A: Physical. 2015. V. 221. P. 1-8. https://doi.org/10.1016/j.sna.2014.09.029
13. Lee H.-K., Chang S.-I., Yoon E. A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment. IEEE Journal of Micro-electromechanical Systems. 2006. V. 15. № 6. P. 1681-1686. https://doi.org/10.1109/JMEMS.2006.886021
14. Ramadan K., Sameoto D., Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures. 2014. V. 23. № 3. P. 033001. https://doi.org/10.1088/0964-1726/23/3/033001
15. Seminara L., Pinna L., Valle M., Basiricò L., Loi A., Cosseddu P., Bonfiglio A., Ascia A., Biso M., Ansaldo A. Piezoelectric polymer transducer arrays for flexible tactile sensors. IEEE Sensors Journal. 2013. V. 13. № 10. P. 4022-4029. https://doi.org/10.1109/JSEN.2013.2268690
16. Hamdi O., Mighri F., Rodrigue D. Piezoelectric cellular polymer films: Fabrication, properties and applications (Review). AIMS Materials Science. 2018. V. 5. № 5. P. 845-869. https://doi.org/10.3934/matersci.2018.5.845
17. Aleksandrova M. Spray deposition of piezoelectric polymer on plastic substrate for vibrational harvesting and force sensing applications. AIMS Materials Science. 2018. V. 5. № 6. P. 1214-1222. https://doi.org/10.3934/matersci.2018.6.1214
18. Rajala S., Tuukkanen S., Halttunen J. Characteristics of piezoelectric polymer film sensors with solution-processable graphene-based electrode materials. IEEE Sensors Journal. 2015. V. 15. № 6. P. 3102-3109. https://doi.org/10.1109/JSEN.2014.2344132
19. Dahiya R.S., Valle M., Lorenzelli L. SPICE model for lossy piezoelectric polymers. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2009. V. 56. № 6. P. 387-395. https://doi.org/10.1109/TUFFC.2009.1048
20. Yu P., Liu W., Gu C., Cheng X., Fu X. Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement. Sensors. 2016. V. 16. № 6. P. 1-15. https://doi.org/10.3390/s16060819
21. Zhang J., Zhou L.J., Zhang H.M., et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale. 2018. V. 10. № 16. P. 7387-7395. https://doi.org/10.1039/c7nr09149d
22. Patent RF № 2630537. Pan'kov A.A. Volokonno-opticheskij datchik davleniya [Fiber optic pressure sensor]. Application Date: 06.09.2016. Publication Date: 11.09.2017 (In Russian).
23. Patent RF № 2643692. Pan'kov A.A. Volokonno-opticheskij datchik ob"emnogo napryazhennogo sostoyaniya [Fiber optic volumetric voltage sensor]. Application Date: 04.04.2017. Publication Date: 05.02.2018 (In Russian).
24. Pan’kov A.A. Indicator polymer coating with built-in fiber optic piezosensor. IOP Conf. Series: Materials Science and Engineering. 2021. V. 1029. P. 012072. https://doi.org/10.1088/1757-899X/1029/1/01207
For citation:
Pan’kov A.A. Static and dynamic electroelastic analysis of tactile polymer coating with integrated fiber optic piezo-electroluminescent sensor. // Journal of Radio Electronics. – 2025. – №. 9. https://doi.org/10.30898/1684-1719.2025.9.8 (In Russian)