

DOI: https://doi.org/10.30898/1684-1719.2025.9.9

УДК: 533.95:629.782

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ ПЛАЗМЫ УДАРНОГО СЛОЯ ВБЛИЗИ КРИТИЧЕСКОЙ ТОЧКИ СПУСКАЕМОГО АППАРАТА

А.Р. Мурлага

Центральный научно-исследовательский радиотехнический институт им. академика А.И. Берга 107078, Москва, ул. Новая Басманная, 20, корп. 9

Статья поступила в редакцию 11 июня 2025 г.

Аннотация. В ряде практических задач важно обеспечивать устойчивую радиосвязь со спускаемыми аппаратами в плотных слоях атмосферы. Большие сверхзвуковые скорости, с которыми спускаемые аппараты движутся на этом участке траектории, приводят к возникновению в их носовой части сильно нагретого плазменного ударного слоя, заметно ослабляющего прохождение радиоволн. Потери в плазме складываются из отражения сигнала от границы раздела «плазма/свободное пространство» и из его затухания в плазме и определяются значениями показателей преломления и поглощения плазмы. Цель статьи состоит в определении показателей преломления и поглощения радиоволн в плазме ударного слоя вблизи критической точки спускаемого аппарата для различных высот его полета и скоростей набегающего потока. При проведении расчета приняты следующие допущения: плазма ударного слоя является однородной и изотропной, к движению заряженных частиц применима классическая теория, внешнее магнитное поле отсутствует, электронный газ является невырожденным, плазма находится в состоянии термодинамического равновесия, в теплозащитном покрытии спускаемого аппарата отсутствуют

легкоионизуемые компоненты, влияющие на интенсивность протекания ионизационных процессов в плазме ударного слоя. С использованием известных соотношений выполнены расчеты параметров плазмы ударного слоя вблизи критической точки спускаемого аппарата для высот полета спускаемого аппарата от 80 до 20 км и скоростей набегающего потока 4,6; 6 и 7,4 км/с: концентрации электронов и молекул, температуры, эффективного числа соударений электронов с ионами и молекулами среды, - позволившие определить диэлектрическую проницаемость, проводимость и показатели преломления и поглощения плазмы ударного слоя. Анализ результатов показал, что, поскольку в рассматриваемых случаях плазменная среда обладает ненулевой проводимостью, несмотря на отрицательные значения диэлектрической проницаемости показатель преломления плазмы остается вещественным, и, следовательно, в плазме существует бегущая волна. Показатели преломления и поглощения плазмы являются функциями высоты, скорости набегающего потока и частоты. С уменьшением высоты полета спускаемого аппарата наблюдается их стабильный рост, что объясняется ростом проводимости и абсолютного значения диэлектрической проницаемости плазменной среды. Полученные в статье результаты являются параметрами электродинамической модели спускаемого аппарата, используя которую в дальнейшем планируется постановка серии численных экспериментов, позволяющих выбрать оптимальный конструктивный облик и технические характеристики бортовой аппаратуры связи.

Ключевые слова: плазма, ударный слой, спускаемый аппарат, потери в плазме, радиосвязь.

Автор для переписки: Мурлага Алексей Ростиславович, myrlaga_olga@mail.ru

Введение

В ряде практических задач важно обеспечивать устойчивую одно- или двустороннюю радиосвязь со спускаемыми аппаратами в плотных слоях атмосферы (на высотах ниже 90 км) [1-3]. Большие сверхзвуковые скорости, с которыми спускаемые аппараты движутся на этом участке траектории, приводят к возникновению в их носовой части сильно нагретого плазменного ударного слоя [4-6], заметно ослабляющего прохождение радиоволн, что при проектировании аппаратуры связи (как бортового, так и наземного/космического сегмента) приводит к необходимости учета потерь сигнала в плазменном ударном слое, которые зависят от высоты полета спускаемого аппарата, скорости набегающего потока (равной скорости движения спускаемого аппарата) и направления излучения/приема сигнала [7,8].

Как следует из [9], максимальные потери в плазме возникают вблизи критической точки спускаемого аппарата, поскольку нормальная составляющая скорости набегающего потока, от которой зависят процессы нагрева и ионизации в ударном слое, принимает здесь максимальное значение.

Потери в плазме складываются из отражения сигнала от границы раздела «плазма/свободное пространство» и из его затухания в плазме и определяются значениями показателей преломления и поглощения плазмы.

Цель статьи состоит в определении показателей преломления и поглощения радиоволн в плазме ударного слоя вблизи критической точки спускаемого аппарата для различных высот его полета и скоростей набегающего потока.

1. Допущения, принятые при расчете

При проведении расчета показателей преломления и поглощения радиоволн в плазме ударного слоя приняты следующие допущения:

- плазма является однородной и изотропной;
- к движению заряженных частиц применима классическая теория (допущение эквивалентно условию $\hbar\omega << k_B T$, где \hbar постоянная Планка; ω циклическая частота; $k_{\rm B}$ постоянная Больцмана; T температура плазмы. Данное допущение выполняется для сантиметровых волн уже при $T \sim 100~{\rm K}$);
 - внешнее магнитное поле отсутствует;
- электронный газ является невырожденным (температура вырождения согласно [10] $T_0 \sim \frac{\hbar^2 N^{2/3}}{m k_B}$, где N концентрация электронов; m масса электрона. Поскольку даже при $N \sim 10^{16}$ см $^{-3}$ $T_0 \sim 10^{-1}$ K, электронный газ при характерных для ударного слоя температурах $T \sim 5000$ K является невырожденным);
- плазма находится в состоянии термодинамического равновесия (согласно [9] допущение справедливо при скорости набегающего потока V_{∞} , лежащей в диапазоне от 4,5 до 7,5 км/с, и относительной плотности окружающей среды ρ / ρ_0 , лежащей в диапазоне от 10^{-1} до 10^{-5} , что соответствует диапазону высот H от 80 до 18 км);
- в теплозащитном покрытии спускаемого аппарата отсутствуют легкоионизуемые компоненты, влияющие на интенсивность протекания ионизационных процессов в плазме ударного слоя.

2. Основные расчетные соотношения

Как известно [10], показатели преломления n и поглощения радиоволн k в среде с диэлектрической проницаемостью ε и проводимостью σ равны:

$$\begin{cases} n = \sqrt{\frac{\varepsilon}{2} + \sqrt{(\frac{\varepsilon}{2})^2 + (\frac{2\pi\sigma}{\omega})^2}} \\ k = \sqrt{-\frac{\varepsilon}{2} + \sqrt{(\frac{\varepsilon}{2})^2 + (\frac{2\pi\sigma}{\omega})^2}} \end{cases}$$
 (1)

В соответствии с [10] диэлектрическая проницаемость и проводимость плазмы определяются следующим образом:

$$\begin{cases} \varepsilon = 1 - \frac{4\pi e^2 N}{m(\omega^2 + v_{3\phi\phi}^2)}, \\ \sigma = \frac{e^2 N v_{3\phi\phi}}{m(\omega^2 + v_{3\phi\phi}^2)}, \end{cases}$$
(2)

где e — заряд электрона; $v_{9\varphi\varphi}$ — эффективное число соударений электронов с частицами плазменной среды.

В плазме могут иметь место соударения электронов как с ионами, так и с молекулами. Как следствие, эффективное число соударений определяется следующим образом [10]:

$$v_{9\phi\phi} = v_{9\phi\phi,m} + v_{9\phi\phi,i}, \tag{3}$$

где $v_{9\varphi\phi,m}$ — эффективное число соударений с молекулами; $v_{9\varphi\phi,i}$ — эффективное число соударений с ионами.

Для воздуха число соударений электронов с молекулами согласно [10] имеет вид:

$$v_{\ni \phi \phi, m} = 1.7 \cdot 10^{11} \frac{N_m}{2.7 \cdot 10^{19}} \sqrt{\frac{T}{300}},$$
 (4)

где N_m – концентрация молекул.

Число соударений электронов с ионами согласно [10] имеет вид:

$$v_{\ni \phi \phi, i} = \frac{5.5N}{T^{3/2}} \ln(220 \frac{T}{N^{1/3}}). \tag{5}$$

Концентрация электронов и молекул в плазме, а также температура плазмы могут быть определены на основе графических зависимостей, приведенных в [9].

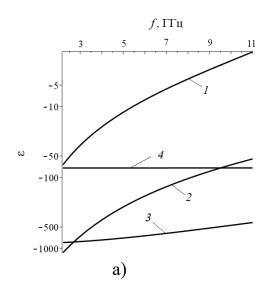
Из всех рассматриваемых параметров плазмы (N, N_m , T, $\nu_{9\varphi\varphi,i}$, $\nu_{9\varphi\varphi,m}$, $\nu_{9\varphi\varphi}$, ε , σ) от частоты радиоволны зависят только ε и σ , в то время как остальные параметры плазмы являются функциями только высоты полета спускаемого аппарата (плотности среды) и скорости набегающего потока.

3. Результаты расчета

Выполненные с использованием соотношений (3)-(5) результаты расчета параметров плазмы ударного слоя вблизи критической точки спускаемого аппарата для высот полета спускаемого аппарата H от 80 до 20 км и скоростей набегающего потока $V_{\infty} = 4,6$; 6; 7,4 км/с приведены в таблицах 1-3.

Таблица 1. Результаты расчета параметров плазмы при скорости набегающего потока $V_{\infty} = 7,4$ км/с.

Н,	Параметры плазмы						
КМ	N, cm ⁻³	N_m , cm ⁻³	<i>T</i> , K	$v_{9\varphi\varphi,i}, c^{-1}$	$v_{9\varphi\varphi,m}, c^{-1}$	$v_{9\phi\phi}, c^{-1}$	
80	$4,06\cdot10^{12}$	$8,67\cdot10^{15}$	5457,5	$2,39\cdot10^{8}$	$2,33\cdot10^{8}$	$4,72 \cdot 10^8$	
70	$2,09 \cdot 10^{13}$	$3,64 \cdot 10^{16}$	6026,6	$9,50\cdot10^{8}$	$1,03\cdot10^9$	$1,98 \cdot 10^9$	
60	$8,48 \cdot 10^{13}$	$1,20\cdot10^{17}$	6588,4	$3,05\cdot10^9$	$3,53\cdot10^9$	$6,58 \cdot 10^9$	
50	$3,09 \cdot 10^{14}$	$3,65\cdot10^{17}$	7964,0	$7,81\cdot10^9$	$1,18\cdot10^{10}$	$1,96\cdot10^{10}$	
40	$1,31\cdot10^{15}$	$1,27 \cdot 10^{18}$	7987,5	$2,81\cdot10^{10}$	$4,14\cdot10^{10}$	$6,95\cdot10^{10}$	
30	$6,81 \cdot 10^{15}$	$5,31\cdot10^{18}$	7831,9	$1,19\cdot10^{11}$	$1,71 \cdot 10^{11}$	$2,90\cdot10^{11}$	
20	$3,97 \cdot 10^{16}$	$2,45\cdot10^{19}$	7474,8	$5,31\cdot10^{11}$	$7,69 \cdot 10^{11}$	$1,30\cdot10^{12}$	


Таблица 2. Результаты расчета параметров плазмы при скорости набегающего потока $V_{\infty} = 6$ км/с.

Н,	Параметры плазмы						
КМ	N, cm ⁻³	N_m , cm ⁻³	<i>T</i> , K	$v_{9\phi\phi,i}, c^{-1}$	$v_{9\phi\phi,m}, c^{-1}$	$v_{9\phi\phi}, c^{-1}$	
80	$1,14\cdot10^{12}$	$7,56\cdot10^{15}$	4902,5	$8,50\cdot10^{7}$	$1,92 \cdot 10^8$	$2,77\cdot10^{8}$	
70	$5,88 \cdot 10^{12}$	$3,15\cdot10^{16}$	5478,7	$3,35\cdot10^{8}$	$8,48\cdot10^{8}$	$1,18\cdot10^9$	
60	$2,39 \cdot 10^{13}$	$1,06\cdot10^{17}$	5828,2	$1,12\cdot10^9$	$2,93 \cdot 10^9$	$4,05\cdot10^9$	
50	$8,71\cdot10^{13}$	$3,20\cdot10^{17}$	6987,0	$2,91\cdot10^9$	$9,71\cdot10^{9}$	$1,26\cdot10^{10}$	
40	$3,70\cdot10^{14}$	$1,10\cdot10^{18}$	7085,6	$1,05\cdot10^{10}$	$3,38\cdot10^{10}$	$4,43\cdot10^{10}$	
30	$1,92 \cdot 10^{15}$	$4,74 \cdot 10^{18}$	6795,3	$4,68 \cdot 10^{10}$	$1,42 \cdot 10^{11}$	$1,89 \cdot 10^{11}$	
20	$1,12 \cdot 10^{16}$	$2,26\cdot10^{19}$	6413,1	$2,21\cdot10^{11}$	$6,58 \cdot 10^{11}$	$8,79 \cdot 10^{11}$	

Таблица 3. Результаты расчета параметров плазмы при скорости набегающего потока $V_{\infty} = 4,6$ км/с.

Н,	Параметры плазмы						
КМ	N, cm ⁻³	N_m , cm ⁻³	<i>T</i> , K	$v_{9\varphi\varphi,i}, c^{-1}$	$v_{9\phi\phi,m}, c^{-1}$	$v_{9\phi\phi}, c^{-1}$	
80	$2,30\cdot10^{11}$	$5,78 \cdot 10^{15}$	4347,5	$2,23\cdot10^7$	$1,39 \cdot 10^8$	$1,61\cdot10^{8}$	
70	$1,18\cdot 10^{12}$	$2,46\cdot10^{16}$	4711,7	$9,21\cdot10^{7}$	$6,14\cdot10^{8}$	$7,06\cdot10^{8}$	
60	$4,80\cdot10^{12}$	$8,74\cdot10^{16}$	4941,3	$3,17\cdot10^{8}$	$2,23\cdot10^9$	$2,55\cdot10^9$	
50	$1,75\cdot10^{13}$	$2,63\cdot10^{17}$	5617,0	$8,83 \cdot 10^8$	$7,15\cdot10^9$	$8,04\cdot10^9$	
40	$7,43\cdot10^{13}$	$9,61\cdot10^{17}$	5668,5	$3,25\cdot10^9$	$2,63\cdot10^{10}$	$2,95\cdot10^{10}$	
30	$3,85\cdot10^{14}$	$3,99 \cdot 10^{18}$	5298,0	$1,52 \cdot 10^{10}$	$1,05\cdot 10^{11}$	$1,21\cdot10^{11}$	
20	$2,25\cdot10^{15}$	$1,94\cdot10^{19}$	4939,8	$7,53\cdot10^{10}$	$4,96\cdot10^{11}$	$5,71\cdot10^{11}$	

Зависимости $\varepsilon(f)$ и $\sigma(f)$, полученные в результате подстановки параметров плазмы в (2), приведены на рис. 1-3.

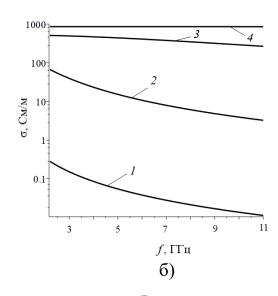


Рис. 1. Диэлектрическая проницаемость а) и проводимость б) плазмы ударного слоя вблизи критической точки спускаемого аппарата для различных частот радиоволн f и высот H при скорости набегающего потока $V_{\infty} = 7,4$ км/с. 1 - H = 80 км; 2 - H = 60 км; 3 - H = 40 км; 4 - H = 20 км.

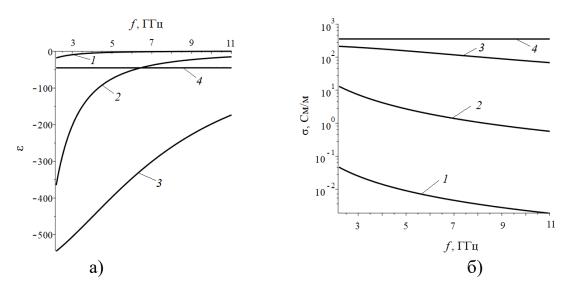


Рис. 2. Диэлектрическая проницаемость а) и проводимость б) плазмы ударного слоя вблизи критической точки спускаемого аппарата для различных частот радиоволн f и высот H при скорости набегающего потока $V_{\infty}=6$ км/с. 1-H=80 км; 2-H=60 км; 3-H=40 км; 4-H=20 км.

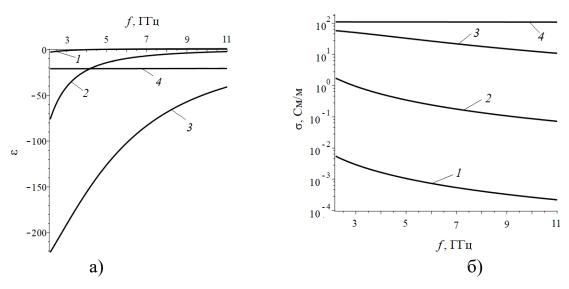


Рис. 3. Диэлектрическая проницаемость а) и проводимость б) плазмы ударного слоя вблизи критической точки спускаемого аппарата для различных частот радиоволн f и высот H при скорости набегающего потока $V_{\infty} = 4,6$ км/с. 1 - H = 80 км; 2 - H = 60 км; 3 - H = 40 км; 4 - H = 20 км.

Зависимости n(f) и k(f), полученные в результате подстановки функций $\varepsilon(f)$ и $\sigma(f)$ в (1), приведены на рис. 4-6.

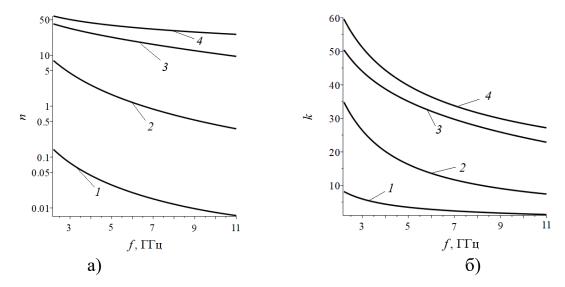


Рис. 4. Показатель преломления а) и показатель поглощения б) плазмы ударного слоя вблизи критической точки спускаемого аппарата для различных частот радиоволн f и высот H при скорости набегающего потока $V_{\infty} = 7,4$ км/с. 1 - H = 80 км; 2 - H = 60 км; 3 - H = 40 км; 4 - H = 20 км.

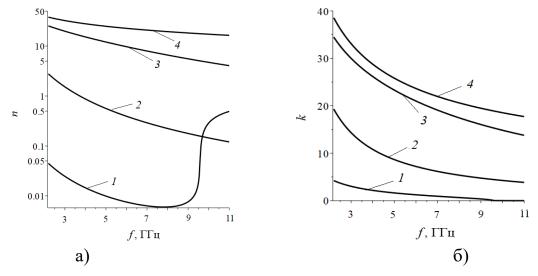


Рис. 5. Показатель преломления а) и показатель поглощения б) плазмы ударного слоя вблизи критической точки спускаемого аппарата для различных частот радиоволн f и высот H при скорости набегающего потока $V_{\infty}=6$ км/с. 1-H=80 км; 2-H=60 км; 3-H=40 км; 4-H=20 км.

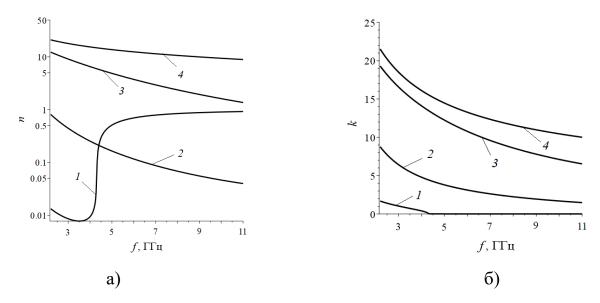


Рис. 6. Показатель преломления а) и показатель поглощения б) плазмы ударного слоя вблизи критической точки спускаемого аппарата для различных частот радиоволн f и высот H при скорости набегающего потока $V_{\infty} = 4,6$ км/с. 1 - H = 80 км; 2 - H = 60 км; 3 - H = 40 км; 4 - H = 20 км.

4. Анализ результатов расчета

С ростом скорости набегающего потока увеличивается нагрев плазменной среды, что приводит к увеличению концентрации электронов в ней, а следовательно, к уменьшению ее диэлектрической проницаемости и увеличению проводимости. Поскольку диэлектрическая проницаемость плазмы в большинстве рассматриваемых случаев — величина отрицательная, ее уменьшение означает рост ее абсолютного значения.

С уменьшением высоты полета спускаемого аппарата увеличивается плотность среды, что приводит к увеличению эффективного числа соударений электронов с ионами и молекулами среды. Влияние этого эффекта на диэлектрическую проницаемость и проводимость плазменной среды определяется соотношением между ω^2 и $v^2_{-9\varphi\varphi}$. Так, на высоте $H \sim 80$ км $\omega^2 >> v^2_{-9\varphi\varphi}$ и є и σ обратно пропорциональны f^2 , при этом σ пропорциональна $v_{-9\varphi\varphi}$. На высоте $H \sim 20$ км $\omega^2 << v^2_{-9\varphi\varphi}$ и є и σ практически не зависят от f, при этом ε обратно пропорциональна $v^2_{-9\varphi\varphi}$, а σ обратно пропорциональна $v_{-9\varphi\varphi}$. На высоте f собратно пропорциональна f собратно пропорц

До тех пор, пока $v_{-9\varphi\varphi}^2$ мало по сравнению ω^2 (т.е. до высот $H \sim 50$ км, как следует из таблиц 1-3), диэлектрическая проницаемость уменьшается за счет роста электронной концентрации плазмы с уменьшением высоты. По мере того, как увеличивается вклад $v_{-9\varphi\varphi}^2$ в компонент ($\omega^2 + v_{-9\varphi\varphi}^2$), темп уменьшения диэлектрической проницаемости постепенно снижается, а затем диэлектрическая проницаемость начинает расти.

В отличие от диэлектрической проницаемости проводимость плазмы с уменьшением высоты всегда растет, однако темп роста изменяется: от быстрого роста на высотах H>50 км, связанного с малостью вклада $v^2_{\ 9\varphi\varphi}$ в компонент $(\omega^2+v^2_{\ 9\varphi\varphi})$, при котором $\sigma\sim N\nu_{\ 9\varphi\varphi}$, до медленного роста ниже $H\sim50$ км, обусловленного значительным вкладом $v^2_{\ 9\varphi\varphi}$ в компонент $(\omega^2+v^2_{\ 9\varphi\varphi})$, при котором $\sigma\sim\frac{N}{\nu_{\ 9\varphi\varphi}}$ (как следует из таблиц 1-3, $N>>\nu_{\ 9\varphi\varphi}$, поэтому рост проводимости

Поскольку плазменная среда обладает ненулевой проводимостью, несмотря на отрицательные значения диэлектрической проницаемости показатель преломления плазмы во всех рассматриваемых случаях остается вещественным, и, значит, в плазме существует бегущая волна.

С уменьшением высоты полета спускаемого аппарата наблюдается стабильный рост показателей преломления и поглощения плазмы, что объясняется ростом проводимости и абсолютного значения диэлектрической проницаемости плазменной среды.

Отдельно следует рассмотреть магнитные свойства плазмы ударного слоя. В соответствии с [10] магнитная проницаемость плазмы определяется следующим образом:

$$\mu = 1 + \frac{8\pi}{3} \left(\frac{e\hbar}{2mc}\right)^2 \frac{N}{k_E T},\tag{6}$$

где c — скорость света в свободном пространстве.

плазмы продолжается, но замедляется).

Магнитная проницаемость плазмы ударного слоя, как показывает анализ, не зависит от высоты полета спускаемого аппарата (плотности среды) и скорости набегающего потока, что объясняется следующим обстоятельством: входящий в соотношение для определения μ компонент $(\frac{e\hbar}{2mc})^2 \sim 10^{-40}$, в то время, как компонент $\frac{N}{k_BT}$ даже при $N\sim 10^{16}\,\mathrm{cm}^{-3}$ и $T\sim 7500\,\mathrm{K}$ составляет $\sim 10^{28}\,\mathrm{U}$ и, соответственно, отличие μ от единицы на $\sim 10^{-11}$.

Заключение

Существует множество факторов, влияющих на выбор конструктивного облика и технических характеристик аппаратуры связи, размещаемой на спускаемом аппарате, движущемся с большими сверхзвуковыми скоростями в плотных слоях атмосферы. Так, потери в плазме ударного слоя задают требования к чувствительности приемника, мощности передатчика и коэффициенту усиления антенной системы бортовой аппаратуры связи, а величина обратного отражения от плазменного слоя определяет особенности компоновки аппаратуры в корпусе спускаемого аппарата и необходимость принятия комплекса мер для снижения нагрева аппаратуры.

Полученные в статье результаты являются параметрами электродинамической модели спускаемого аппарата, используя которую в дальнейшем планируется постановка серии численных экспериментов, позволяющих выбрать оптимальный конструктивный облик и технические характеристики бортовой аппаратуры связи.

Литература

 Giangaspero V. F. et al. 3D ray tracing solver for communication blackout analysis in atmospheric entry missions //Computer Physics Communications. – 2023. – T. 286. – C. 108663.

- 2. Savino R. et al. Plasma-radiofrequency interactions around atmospheric re-entry vehicles: modelling and arc-jet simulation //Open Aerospace Engineering Journal. 2010. T. 3. №. 1. C. 76-85.
- 3. Morabito D. D. The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres //IPN Progress Report. 2002. C. 42-150.
- 4. Безменов А. Е., Алексашенко В. А. Радиофизические и газодинамические проблемы прохождения атмосферы //М.: Машиностроение. 1982.
- 5. Bendoukha S. A. et al. A study of radio frequency blackout for space probe during atmospheric reentry phase //International Journal of Research-Granthaalayah. 2017. T. 5. №. 3. C. 1-15.
- Mehra N., Singh R. K., Bera S. C. Mitigation of communication blackout during reentry using static magnetic field //Progress In Electromagnetics Research B. 2015.

 T. 63. C. 161-172.
- 7. Tran P., Paulat J. C., Boukhobza P. Re-entry flight experiments lessons learned—the atmospheric reentry demonstrator ARD //Flight Experiments for Hypersonic Vehicle Development. 2007. T. 10. C. 10-46.
- 8. Lehnert R., Rosenbaum B. Plasma effects on Apollo re-entry communication //Publications. 1965. T. 2. C. 412.
- 9. Мартин Дж. Вход в атмосферу. Введение в теорию и практику. 1969.
- 10. Гинзбург В. Л. Распространение электромагнитных волн в плазме. 1960.

Для цитирования:

Мурлага А.Р. Определение электрофизических свойств плазмы ударного слоя вблизи критической точки спускаемого аппарата. // Журнал радиоэлектроники. -2025. -№. 9. https://doi.org/10.30898/1684-1719.2025.9.9