УДК 53.084.872

ВЫСОКОТЕМПЕРАТУРНЫЕ СВЕРХПРОВОДЯЩИЕ ПЛЕНКИ НА ФАСЕТИРОВАННЫХ МОНОКРИСТАЛЛИЧЕСКИХ НИТЯХ

М. Л. Чухаркин ^{1,4}, Н. В. Порохов ², А. С. Калабухов ^{2,4}, О. В. Снигирев ¹, С. Ю. Русанов ³, В. В. Кашин ³, В. Б. Цветков ³, Д. Винклер ⁴

¹МГУ им. М.В. Ломоносова, Физический факультет, Москва, Россия

² МГУ им. М.В. Ломоносова, НИИ Ядерной Физики, Москва, Россия

³Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия

⁴ Технологический университет Чалмерса, факультет микро- и нанотехнологий, Гетеборг, Швеция

Получена 11 февраля 2012 г.

Аннотация. В работе приведены результаты изготовления коротких образцов ВТСП проводников третьего поколения на фасетированных нитях-подложках диоксида циркония. стабилизированного оксидом иттрия (YSZ). Для изготовления фасетированных YSZ волокон использовался метод пьедестала с лазерным нагревом. Характеризация полученных кристаллических волокон метода Лауэ и атомно-силовой микроскопии. проводилась с помощью Буферные слои и слой ҮВСО пленки наносились на волокно методом лазерной абляции. Измерены электрофизические свойства ВТСП пленок на нитяхподложках.

Ключевые слова: высокотемпературные сверхпроводящие пленки, фасетированные монокристаллические нити, лазерная абляция.

Abstract: The paper presents the results of the fabrication of short samples of 3-G HTS wires on YSZ fiber - substrate. The faceted YSZ fibers were made using the laser heated pedestal growth technique (LHPG). Characterization of the obtained crystal fibers was performed by the Laue X-ray technique and AFM. The buffer and YBCO layers were fabricated on the fibers using pulsed laser deposition (PLD).

Electrophysical properties of HTSC films on the YSZ fiber - substrate have been measured.

Keywords: high-temperature superconducting films, faceted single crystal wire, laser ablation.

Введение.

Для улучшения разрешения по магнитному полю и фильтрации пространственно-однородных магнитных шумов окружающей среды в сверхпроводящих квантовых магнитометрах (СКВИДах) гелиевого уровня охлаждения используются аксиальные сверхпроводящие трансформаторы магнитного потока. В таких трансформаторах приемная часть, выполненная из тонкой сверхпроводящей проволоки, замкнута сверхпроводящими контактами на тонкопленочную многовитковую сигнальную катушку, размещенную на чипе с квантовым интерферометром [1,2].

трансформаторов Отсутствие магнитного потока И аксиальных градиометров, сделанных из высокотемпературного сверхпроводящего (ВТСП) провода подобно их низкотемпературным аналогам, сильно ограничивает возможности высокотемпературных сверхпроводящих квантовых магнитометров во многих перспективных применениях. Примерами таких применений являются магнитокардиография в условиях неэкранированного [3], магнитно-резонансная томография пространства В ультра слабых магнитных полях [4] и портативные детекторы взрывчатых веществ, использующие ядерно-квадрупольный резонанс [5].

Изготовление высокотемпературных трансформаторов магнитного потока и градиометров затруднено рядом причин. Во-первых, в настоящее время отсутствуют подходящие ВТСП-провода с малым по значению аспектным соотношением ширины к толщине и высокой плотностью критического тока, а во-вторых, отсутствие методики получения сверхпроводящих электрических контактов между частями ВТСП трансформатора.

были Тем не менее, недавно изготовлены протестированы И трансформаторы потока, сделанные на основе промышленных ВТСП лент 2-го поколения, соединенных обычным припоем [6,7]. Несмотря на отсутствие полностью замкнутого сверхпроводящего контура, такой трансформатор показал достаточно низкую частоту среза для функции передачи магнитного поля от приемной катушки в сигнальную катушку. Однако, проблемой остается получение достаточно высоких значений величины взаимоиндукции сигнальной катушки ВТСП трансформатора к интерферометру СКВИДа при использовании сверхпроводящих лент, имеющих большое аспектное отношением ширины к толщине.

Решение обозначенных проблем может быть получено при использовании ВТСП проводов 3-го поколения, в виде гибких кристаллических волокон с диаметром 50 – 100 микрометров с нанесенной на них ВТСП пленкой. Работы в данном направлении ведутся достаточно активно и в недавно опубликованной статье [8] были представлены свойства ВТСП YBa₂Cu₃O_{7-x} (YBCO) пленки нанесенной на сапфировую фасетированную нить-подложку. При этом использовались ориентированная в *r*-плоскости плоская фасетка нити-подложки и буферный слой диоксида церия (CeO₂). Полученные образцы показали хорошие сверхпроводящие свойства.

ВТСП провода на гибких сапфировых кристаллических нитях имеют много привлекательных черт, но необходимость изготовления нитей с длинной *r*-ориентированной фасеткой усложняет задачу. Кроме сапфира, в качестве возможного гибкого материала подложки для сверхпроводящих проводов может быть использован, например, диоксид циркония, стабилизированный оксидом иттрия (YSZ). Гибкость поликристаллической YSZ подложки в виде тонких листов толщиной 50 мкм хорошо известна [9,10]. Благодаря кубической кристаллографической структуре YSZ позволяет намного легче получить фасетки с ориентацией, подходящей для буферной пленки CeO₂, с последующим осаждением YBCO пленки.

В этой статье мы приводим первые результаты изготовления коротких образцов ВТСП проводов на YSZ нитях-подложках. Во втором разделе работы описано изготовление фасетированных YSZ волокон методом пьедестала с лазерным нагревом. Характеризация полученных кристаллических волокон приведена в третьем разделе. Нанесение буферного слоя и слоя YBCO пленки на волокно методом лазерной абляции приведены в четвертом разделе статьи. В пятом и шестом параграфах работы приведены результаты измерений критической температуры перехода полученных образцов и измерений зависимости величины критического тока от температуры и их обсуждение.

2. Получение фасетированных YSZ нитей.

Для роста высококачественных монокристаллических волокон применялся метод мини-пьедестала с лазерным нагревом [11, 12]. Суть метода такова: на торец специально приготовленной цилиндрической YSZ заготовки материала (моно- или поликристаллической), расположенной вертикально, фокусируется излучение СО₂ лазера, под воздействием которого на пьедестале (торце заготовки) образуется капля расплава. В эту область вводится затравочный YSZ кристалл, ориентированный в кристаллографическом направлении (100). Он приводится в соприкосновение с расплавом, и затем с определенной постоянной скоростью вытягивается вверх. При этом на конце затравки образуется монокристалл в форме близкой к цилиндрической, так называемое монокристаллическое волокно. Одновременно с вытягиванием растущего кристалла, в зону нагрева снизу вдвигается заготовка для компенсации расхода материала, уносимого из зоны расплава выращенным волокном. Средняя величина диаметра волокна, при установившемся режиме определяется соотношением скоростей перемещения роста, волокна И заготовки, а также величиной диаметра последней [13].

В ходе эксперимента полученные волокна имели диаметр близкий к 300 мкм, а длину до 30 мм. Оказалось, что данная технология позволяет получить волокно с односторонней фасеткой по всей длине. На рисунке 1а показана

центральная часть полученного фасетированного волокна. На рисунке 1б показан вид с торца полученного волокна.

Рис. 1. Фотография полученного YSZ фасетировоного волокна. (а) - профиль волокна на котором видна фасетка по всей длине, (б) - торец волокна.

3. Рентгено-дифракционный анализ оптического волокна.

Определение кристаллографической ориентации волокна проводили с использованием классического метода Лауэ на просвет. Для регистрации картины рассеяния использовали пластину с оптической памятью размером 110 мм × 110 мм. Попытка получить лауэграмму при падении рентгеновского излучения на боковую поверхность исследуемой нити не привела к успеху, поскольку при малой толщине волокна сигнал был слабым. Поэтому использовалась съемку лауэграмм вдоль оси волокна, которая для выполнения условий эпитаксии слоев CeO₂ и YBCO должна соответствовать семейству направлений <001>. Поскольку решетка ZrO₂ кубическая, при такой ориентации оси на боковой поверхности волокна должны иметься участки волокна, соответствующие направлениям [100], [010], [-100],[0-10], которые и должны обеспечить условия эпитаксиального роста.

Съемку проводили с помощью источника рентгеновского излучения с серебряным вращающимся анодом. Мощность источника при съемке составляла 5 кВт. Волокно закреплялось на высокоточном 5-ти осевом гониометре, с отсчетами углов не хуже 0.5 угловых минут. Для юстировки

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N2, 2013

волокна с осью узкого рентгеновского пучка, формируемого с помощью круглого коллиматора с выходной апертурой 1 мм, использовали оптический лазер и соответствующие диафрагмы, для обеспечения высокой точности настройки, которая в нашем случае не превышала 1 углового градуса.

Полученная лауэграмма одного из образцов, индицированная с помощью программы LauePt, показала, что ось исследованного волокна не точно соответствует направлению <001>. Отклонение оси волокна от направления <001> составляло около 15 угловых градусов. Наиболее близким к направлению оси волокна является направление <112>. Обнаруженный астеризм пятен Лауэ свидетельствует о наличии блоков и деформации кристаллической решетки нити.

Шероховатость поверхности фасетки нити исследовалась на ряде других образцов с помощью атомно-силового микроскопа (ACM) Solver P47. Необходимо отметить, что установка нити на измерительную головку с правильной ориентацией фасеток, из-за малости толщины нити, представляет сложную задачу и требует от исследователя очень высокой квалификации.

Одно измерение включало 5 сканирований в разных местах фасетки, с площадью 10×10 мкм² и скоростью 76 мкм/с (частота сканирования строк 4 Гц). Для исключения артефактов на изображениях, вызванных попаданием чужеродных объектов на поверхность исследуемого образца, или повреждением кантилевера, в одном скане при расчете шероховатости учитывалась либо вся область сканирования, либо отдельный её участок. Среднее значение шероховатости фасетки составило 6.7 нм.

4. Нанесение тонких ВТСП пленок.

Пленки YBCO были получены с использованием кластерной системой осаждения DCA. Слои оксида церия и YBCO наносились в разных вакуумных камерах за один вакуумный цикл. С целью зафиксировать волокно в держатель и обеспечить необходимую температуру, образец был помещен под стандартную сапфировую подложку. В использованной системе осаждения

держатель установлен горизонтально, тем самым стандартная сапфировая подложка собственным весом обеспечивает прижим волокна.

Буферный слой диоксида церия CeO₂ толщиной 50 нм был нанесен радиочастотным магнетронным осаждением при температуре 780 °C. Слой был осажден источником мощностью 100 Вт в атмосфере смеси газов кислородаргон (60% O₂ + 40% Ar) при давлении 0,1 мБар. Расстояние между мишенью и образцом было 30 мм. После осаждения образцы охлаждали до комнатной температуры в атмосфере кислорода при давлении 0,5 мБар. После нанесения CeO₂ образец был перемещен в камеру для лазерного осаждения без разрыва вакуума.

УВСО слой наносился при температуре образца 880 °С в атмосфере кислорода при давлении 0,6 мБар. Для получения толщины УВСО слоя порядка 360 нм было сделано 7500 импульсов при плотности энергии лазера на мишени 1,25 Дж/см². Расстояние мишень- подложка составляло 60 мм.

Поверхности полученных YBCO пленок были исследованы с использованием растрового электронного микроскопа (РЭМ). На рисунке 2а показана центральная часть YSZ волокна, с нанесенной YBCO пленкой и серебряной пастой для контактов. На рисунке 2б показана структура поверхности YBCO пленки.

Рис. 2. Изображения нити и поверхности пленки в растровом электронном микроскопе. Общий вид центральной части нити волокна - (а), поверхность YBCO-пленки - (б).

На изображении 26 хорошо видно, что характерный размер гранул ВТСП пленки составляет около 5 микрометров.

5. Электрические свойства.

Электрические характеристики осажденной ВТСП пленки исследовались с помощью измерителя физических свойств веществ PPMS "Quantum Design". Образец приклеивался на держатель. Для реализации четырех точечной схемы измерений к контактным площадкам держателя ультразвуковой сваркой крепились золотые провода толщиной 25 микрон, которые далее приклеивались к нити с помощью серебряной пасты.

Один из выбранных образцов (А) в течение всей процедуры измерения сохранял первоначальную длину 10 мм, в то время как второй образец (Б) был случайно разломан и измерения проводились на одной из его частей длиной 5 мм.

Рис. 3. Температурная зависимость сопротивления образцов напыленных пленок в нулевом магнитном поле.

Прежде всего, была измерена критическая температура T_C напыленных пленок в нулевом магнитном поле. Резкий резистивный переход, с шириной ΔT порядка 1 градуса, от сопротивлений образцов 700 Ом и 350 Ом, соответственно, к остаточному сопротивлению порядка 5 Ом, был обнаружен при температуре близкой к 90 К (Рис. 3 а, б). При этом образец А показывал

почти постоянное значение сопротивления R выше T_C , а образец Б имел практически металлический ход зависимости R(T). Исходя из геометрии образцов их удельные сопротивления ρ_n можно было оценить как 200 мкОм×см и 100 мкОм×см, соответственно.

Рис. 4. Зависимость сопротивления образца (А) от температуры при различных значениях магнитного поля – (а), зависимость критической температуры образца от магнитного поля – (б).

Зависимость T_C от приложенного магнитного поля для образца А показана на Рис. 4. Такой тип зависимости R(T, H) характерен для ситуации, в которой магнитное поле ориентировано осей a.b В плоскости кристаллографической структуры YBCO [14, 15], что говорит о *с*-ориентации пленки, выращенной на поверхности фасетки образца. Можно видеть, что увеличение поля не только снижает критическую температуру, но и уширяет переход. Кривые, снятые в полях 0 - 6 Тл, сливаются при температурах выше *T_C*, а кривые, измеренные в полях 7 и 8 Тл, демонстрируют систематический сдвиг неясного происхождения по величине сопротивления примерно на 25 Ом. Уширение перехода в пленках высокотемпературных сверхпроводников было отмечено ранее в работе [16] и объяснено термически активированным движением абрикосовских вихрей. Можно отметить, что на кривых R(T, H)

отсутствует так называемое «колено», приписываемое обычно плавлению вихревой решетки или диссипации, вызванной термически активированным движением абрикосовских вихрей.

Рис. 5. Температурная зависимость критического тока YBCO пленок образцов А (слева) и Б (справа), напыленных на YSZ нити.

Температурная зависимость критического тока I_C от температуры показана на Рис. 5.

Для образца (A) эта зависимость хорошо аппроксимируется зависимостью (1-Т/Тс), соответствующей джозефсоновскому туннелированию между гранулами пленки [17, 18], в то время как зависимость $I_C(T)$ для образца $(1-T^2/T_c^2)$, Б к лучше аппроксимируется зависимостью что может соответствовать механизму появления критического тока по образованию вихрей на краях эпитаксиальной пленки с размером блоков более лондоновской длины проникновения магнитного поля [18].

Вследствие необычной формы подложки и гранулированной структуры пленки, оценить реальную площадь ее сечения весьма затруднительно. Если предположить, что пленка покрывает однородно поверхность фасетки, имеющей размер примерно 1/3 от диаметра нити (см. Рис. 1) и, что толщина пленки соответствует значениям, получаемым для плоских подложек при том же числе лазерных импульсов, то значение усредненной плотности

критического тока J_C для образцов при 77 К можно оценить как 5×10⁴ A/см², что представляется вполне реалистичным.

6. Обсуждение результатов.

монокристаллическими YSZ Первые эксперименты с волокнами показали, что на них могут быть получены ҮВСО пленки с высокой критической температурой, близкой к 90 К и узкой шириной перехода при условиях напыления, близких к обычно используемым при напылении на Гораздо большую сложность в настоящее плоские подложки. время представляют контролируемое выращивание волокон YSZ с малыми углами отклонения направления роста от кристаллографических направлений <001> и контроль морфологии поверхности фасеток. Именно эти факторы определяют размер гранул, тип межгранульных границ полученной пленки, ее усредненную сплошность, значения получаемого критического тока и его плотности.

Работа выполнена при поддержке Минобрнауки РФ (Программа "Кадры" грант-субсидия 8244).

Литература

- J. Clarke , M. Hatridge and M. Mößle. «SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields» Annu. Rev. Biomed. Eng. 9 389 (2007).
- A. N. Matlachov, P.L. Volegov, M.A. Espy, R. Stolz, L. Fritzsch, V. Zakosarenko, H-G. Meyer and R. H. Kraus, «Instrumentation for simultaneous detection of low field NMR and biomagnetic signals», Jr. *IEEE Trans. Appl. Supercond.* 15 676 (2005).
- Burmistrov E V, Svobodtchikov V Yu, Khanin V V, Maslennikov Yu V, and Snigirev O V, «High-sensitivity gradiometer based on three high-T-c SQUID magnetometers» Journal of Communication Technology and Electronics 2010 55 1070-1075

- Liao S H, Yang H C, Herng H E and Yang S Y «Characterization of magnetic nanoparticles as contrast agents in magnetic resonance imaging using high-Tc superconducting quantum interference devices in microtesla magnetic fields», 2009 Supercond. Sci. Technol. 22 025003(5pp)
- He D. F., Tachiki M. Itozaki H. «14N nuclear quadrupole resonance of pnitrotoluene using a high-Tc rf SQUID», Supercond. Sci. Technol. 2007. 20. P. 232—234.
- Divorne H, Scols J, Fermon C, Jacquinot J F, Pannetier-Lecceur M «Flux transformers made of commercial high critical temperature superconducting wires.» 2008 Rev. Sci. Instrum. 79 025107-025111
- Divorne H, Guerrero R, Fermon C, Pannetier-Lecceur M, Jacquinot J F «High Critical Temperature Superconducting Wire Based Flux Transformers» 2009 IEEE Trans. Appl. Supercond. 19 761-763
- 8. Xu Y, Djeu N, Quian Z, Xu Z, He P, Bhattacharya R « Films Grown on Faceted Sapphire Fiber» 2011 IEEE Trans. Appl. Supercond. **21** 3281-3284
- 9. Yang C S, Moeckly B, «Magnesium Diboride Flexible Flat Cables for Cryogenic Electronics», 2010 IEEE Trans. Appl. Supercond. **21** 107-110
- 10.Электронный ресурс сайт Marketech International. URL: <u>http://www.mkt-intl.com/Ceramics_Engineered/Ceraflex.shtml</u>
- 11.Bufetova G A, Kashin V V, Nikolaev D A, Rusanov S Ya, Seregin V F, Tsvetkov V B, Scherbakov I A, Yakovlev A A «Neodymium-doped gradedindex single-crystal fibre lasers» 2006 Quantum Electronics 36 616-619
- 12.Bufetova G A, Kashin V V, Nikolaev D A, Papin Yu M, Rusanov S Ya, Seregin V F, Scherbakov I A, Tsvetkov V B, Yakovlev A A 2007 Laser Phys. Lett. 4, 440-444.
- 13.N.P.Ong, Y.F.Yan, and J.M.Harris, In: *Abstracts: CCAST Symposiumon High-Tc superconductivity and the C60 Family* (Gordon and Breach, Beijing, 1994).

- 14.H.R. Ott. *High-Tc superconductivity*. ETH Zurich, Laboratoriumf Ëur FestkËorperphysik, Switzerland, p. 797.
- 15.T.T.M. Palstra, B. Batlogg, R.B.Van Dover, L.F. Schneemeyer, and J.V.Waszczak, Phys. Rev. Lett. 61, 1662 (1988)
- 16.M. Tinkham. Introduction in superconductivity. 2nd ed., (McGrow-Hill, Singapure, 1995, Ch. 9.
- 17.R.T. Campwirth, K.E. Gray. IEEE Trans. on Magn., vol. MAG-17, no. 1, pp. 565-568, 1981.
- 18.J.R. Clem, B. Bumble, S.I. Raider et al., Phys. Rev. B, vol. 35, no. 13, pp. 6637-6642, 1987.