ДИСПЕРСИЯ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И ПРОВОДИМОСТИ МОНОКРИСТАЛЛОВ TIGaSe₂ ПРИ РАДИОЧАСТОТАХ

С. Н. Мустафаева

Институт Физики Национальной Академии Наук Азербайджана

Статья получена 13 января 2015 г.

Изучение диэлектрических свойств слоистого монокристалла Аннотация. TlGaSe₂ в переменных электрических полях частотой $f = 5 \times 10^4 - 3.5 \times 10^7$ Hz установить релаксационный характер диэлектрической позволило проницаемости, а также природу диэлектрических потерь в монокристалле. Установлено, что частотная зависимость тангенса угла диэлектрических потерь (tgδ) в TlGaSe₂ в изученной области частот обусловлена релаксационной поляризацией. Рассчитаны значения частоты релаксации $f_r = 8.8 \times 10^5$ Hz и времени релаксации $\tau_r = 1.1 \times 10^{-6}$ s. В диапазоне частот $f = 5 \times 10^4 - 1.6 \times 10^6$ Hz *ac*поперек проводимость монокристалла TlGaSe₂ слоёв подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность $N_{\rm F} = 7.5 \times 10^{18} \text{ eV}^{-1} \cdot \text{cm}^{-3}$ и разброс $\Delta E = 5 \times 10^{-3} \text{ eV}$ этих состояний, а также среднее время $\tau = 1.2 \times 10^{-6}$ s и расстояние R = 240 Å прыжков.

Ключевые слова: монокристалл, диэлектрическая проницаемость, частота, диэлектрические потери, прыжковая проводимость, время релаксации, плотность локализованных состояний.

Abstract. The study of dielectric properties of layer TlGaSe₂ single crystal in frequency range $f = 5 \times 10^4 - 3.5 \times 10^7$ Hz allowed to establish relaxation character of dispersion of dielectric permittivity and nature of dielectric losses. It was shown that frequency dependence of the dissipation factor tan δ is determined by the relaxation polarization. The relaxation frequency $f_r = 8.8 \times 10^5$ Hz and relaxation time $\tau_r = 1.1 \times 10^{-6}$ s have been estimated for TlGaSe₂. The *ac*-conductivity across the layers of

studied crystals varies with frequency as $\sigma_{ac} \sim f^{0.8}$ which is characteristic for hopping conductivity near the Fermi-level states. Density of localized states at Fermi level $N_{\rm F}$ = 7.5×10¹⁸ eV⁻¹·cm⁻³, the energy spread of these states $\Delta E = 5 \times 10^{-3}$ eV, average hopping time $\tau = 1.2 \times 10^{-6}$ s and distance R = 240 Å have been evaluated for TlGaSe₂ single crystal.

Keywords: single crystal, dielectric permittivity, frequency, dielectric losses, hopping conductivity, relaxation time, density of localized states.

Введение

Слоистые монокристаллы TlGaSe₂, обладающие сегнетоэлектрическими свойствами, являются привлекательным объектом для использования в качестве функциональных элементов различных электротехнических устройств в современной электронике. Характерной особенностью монокристаллов TlGaSe₂ является сильная анизотропия физических свойств. Так, в [1] были изучены температурные зависимости степени анизотропии проводимости монокристаллов TlInS₂, TlGaS₂ и TlGaSe₂, которые являются изоструктурными, И было установлено, что наибольшую степень анизотропии имеют монокристаллы TlGaSe₂. Монокристаллы TlGaSe₂ представляют интерес также в связи с высокой фоточувствительностью, эффектом памяти [2] и тем, что в них наблюдается последовательность фазовых переходов [3]. В [4] рентгенографическим методом были обнаружены различные политипные модификации кристаллов TlGaSe₂. Образцы TlGaSe₂, представляющие собой различные политипные модификации, отличаются по своим физическим параметрам. В [5] приведены результаты рентгенографических исследований параметров элементарной ячейки и коэффициента теплового расширения кристаллов TlGaSe₂ в области температур 100–300 К. На кривых температурной зависимости этих параметров наблюдались аномалии в виде перегибов и изломов при температурах, соответствующих фазовым переходам в кристаллах. В [6] были представлены результаты изучения диэлектрических характеристик монокристаллов TlGaSe₂ при низких температурах и под действием

ионизирующего излучения.

Цель настоящей работы – изучение диэлектрических свойств монокристаллов TlGaSe₂ в переменных электрических полях, определение основных диэлектрических коэффициентов и установление природы диэлектрических потерь и механизма переноса заряда.

Методика эксперимента

Диэлектрические коэффициенты монокристаллов TlGaSe₂ измерены резонансным методом (подробнее методику см. в [7]). Диапазон частот переменного электрического поля составлял 5×10⁴–3.5×10⁷ Hz.

Образцы из TlGaSe₂ для электрических измерений были изготовлены в виде плоских конденсаторов. В качестве электродов использована серебряная паста. Диэлектрические свойства измерены в направлении, поперек слоям монокристаллов TlGaSe₂. Толщина монокристаллических образцов из TlGaSe₂ составляла 250–270 mkm, а площадь обкладок – 0.24 cm². Удельная темновая проводимость исследуемых кристаллов, измеренная на постоянном токе, составляла $\sigma_{dc} = 2.5 \times 10^{-9} \Omega^{-1} \cdot cm^{-1}$ при 300 К.

Все диэлектрические измерения проведены при 300 К. Воспроизводимость положения резонанса составляла по емкости \pm 0.2 pF, а по добротности ($Q = 1/\text{tg}\delta$) $\pm 1.0-1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3–4 % для ϵ и 7 % для tg δ .

Результаты и их обсуждение

Диэлектрические свойства твердых тел на переменном токе удобно рассматривать, пользуясь понятием комплексной диэлектрической проницаемости

$$\varepsilon = \varepsilon' - j\varepsilon'' \tag{1}$$

где ε' и ε'' – действительная и мнимая части комплексной диэлектрической проницаемости.

На рис. 1 приведена частотная зависимость действительной части комплексной диэлектрической проницаемости монокристалла TlGaSe₂.

Рис. 1. Частотная дисперсия диэлектрической проницаемости в монокристалле $TlGaSe_2$. T = 300 K.

Видно, что с ростом частоты от 5×10^4 до 3.5×10^7 Hz ε уменьшается более чем в 4 раза, причем при сравнительно низких частотах наблюдается резкий спад ε , а при $f > 3.2 \times 10^6$ Hz ε' слабо зависит от частоты. Наибольшее значение $\varepsilon' = 94.6$, измеренное на самой низкой частоте (5×10⁴ Hz) можно считать статической диэлектрической проницаемостью ε_{s} монокристалла TlGaSe₂. Характер электрического изменения ε частотой поля свидетельствует С 0 релаксационной дисперсии диэлектрической проницаемости в монокристалле TlGaSe₂.

На рис. 2 представлена частотная зависимость тангенса угла диэлектрических потерь (tgδ) в монокристалле TlGaSe₂. При $f_t = 1.6 \times 10^6$ Hz кривая tgδ(f) проходит через максимум, а затем носит спадающий характер. Форма экспериментальной кривой tgδ(f) в TlGaSe₂ (рис. 2) характерна для частотного изменения диэлектрических потерь согласно релаксационному механизму [8]. Т.е. наблюдение максимума на кривой tgδ(f) свидетельствует о релаксационных потерях в TlGaSe₂. Наличие одного максимума на кривой tgδ(f)

говорит о том, что монокристалл TlGaSe₂ имеет одно время релаксации (один тип релаксаторов).

Рис. 2. Зависимость тангенса угла диэлектрических потерь в TlGaSe₂ от частоты.

При релаксационных процессах на частоте $f = f_t$ [9]

$$tg\delta_{max} = \frac{\varepsilon'_{st} - \varepsilon'_{opt}}{2\sqrt{\varepsilon'_{st}} \cdot \varepsilon'_{opt}}$$
(2)

Зная экспериментальные значения $tg\delta_{max}$ и ε'_{st} из соотношения (2) можно рассчитать оптическую диэлектрическую проницаемость монокристалла TlGaSe₂. Для ε'_{opt} было получено значение 28.6. Инкремент диэлектрической проницаемости ($\Delta \varepsilon' = \varepsilon'_{st} - \varepsilon'_{opt}$) монокристалла TlGaSe₂ составил 66. Экспериментально полученное значение $f_t = 1.6 \times 10^6$ Hz, при котором tgδ проходит через максимум, позволило из соотношения

$$f_t = f_r \sqrt{\frac{\varepsilon_{\rm st}'}{\varepsilon_{\rm opt}'}} \tag{3}$$

определить частоту релаксации (f_r), значение которой составило 8.8×10^5 Hz. При этом время релаксации в кристалле TlGaSe₂ составило $\tau = 1.1 \times 10^{-6}$ s. Согласно теории [9] при частоте $f = f_r$ диэлектрическая проницаемость є'принимает значение, равное $\Delta \varepsilon'/2$. T.e. при 8.8×10^5 Hz значение ε' должно составлять 33. Экспериментально полученное значение є' при этой частоте составляло 41.

На рис. З показана частотная дисперсия мнимой составляющей комплексной диэлектрической проницаемости ε'' TlGaSe₂. Если в частотном диапазоне 5×10^4 – 3.5×10^7 Hz с ростом частоты значение ε' уменьшалось примерно в 4 раза, то значение ε'' в этой области частот уменьшалось в ~17 раз. Т.е. имела место сильная дисперсия ε'' (особенно при относительно низких частотах). При релаксационной поляризации ε'' при частоте $f = f_r$ должна проходить через максимум (обычно $f_r < f_t$), а её значение, также как и ε' должно составлять $\Delta \varepsilon'/2$, т.е. 33. Как видно из рис. З при $f = f_r = 8.8\times10^5$ Hz на зависимости $\varepsilon''(f)$ наблюдается горб, а ε'' принимает при этой частоте значение, равное 26, т.е. несколько меньше, чем 33. Иными словами экспериментальные значения диэлектрических коэффициентов ε' и ε'' на частоте релаксации (f_r) примерно на 20 % отклоняются от теоретически ожидаемой величины ($\Delta \varepsilon'/2$).

Рис. 3. Частотная зависимость мнимой составляющей комплексной диэлектрической проницаемости TlGaSe2.

На рис. 4 в виде диаграммы представлена зависимость ε" от ε' для монокристалла TlGaSe₂. На данной диаграмме видна одна полуокружность, что

свидетельствует о том, что в образце во всей изученной области частот имеется один тип релаксаторов.

Рис. 4. Зависимость ε'' от ε' для монокристалла TlGaSe₂.

На рис. 5 показана частотная зависимость *ac*– проводимости в монокристалле TlGaSe₂ при T = 300 К. Указанная зависимость в частотной области $f = 5 \times 10^4 - 1.6 \times 10^6$ Нz изменяется по закону $\sigma_{ac} \sim f^{0.8}$, а при частотах $f \ge 1.6 \times 10^6$ Нz σ_{ac} слабо меняется с частотой. Выше указывалось, что при частоте $f = 1.6 \times 10^6$ Hz tg δ в TlGaSe₂ проходил через максимум. Как видно, значения *ac*-проводимости монокристалла TlGaSe₂ на 3–4 порядка превышают значение темновой *dc*-проводимости (2.5×10⁻⁹ Ω^{-1} ·cm⁻¹ при T = 300 K).

Наблюдаемая нами экспериментальная зависимость $\sigma_{ac} \sim f^{0.8}$ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [10]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми.

Рис. 5. Частотно-зависимая ас-проводимость монокристалла TlGaSe₂ при T = 300 K.

Для этого механизма переноса заряда в [11] было получено следующее выражение

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_{\rm F}^2 a^5 f \left[\ln \left(\frac{\nu_{\rm ph}}{f} \right) \right]^4, \tag{4}$$

где *е* – заряд электрона; *k* – постоянная Больцмана; $N_{\rm F}$ – плотность состояний вблизи уровня Ферми; *a* = 1/ α – радиус локализации; α – постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$; $v_{\rm ph}$ – фононная частота.

Согласно формуле (4) *ac*-проводимость зависит от частоты как $f \left[\ln(v_{ph}/f) \right]^4$, т.е. при $f \ll v_{ph}$ величина σ_{ac} приблизительно пропорциональна $f^{0.8}$. С помощью формулы (4) по экспериментально найденным значениям $\sigma_{ac}(f)$ вычислили плотность состояний на уровне Ферми. Вычисленное значение N_F для монокристалла TlGaSe₂ составляло $N_F = 7.5 \times 10^{18} \text{ eV}^{-1} \cdot \text{сm}^{-3}$. При вычислениях N_F для радиуса локализации взято значение a = 34 Å, полученное экспериментально для монокристалла GaSe из *dc*-измерений [12]. Значение v_{ph} взято равным 10^{12} Hz [13]. Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (*R*) определяется по следующей формуле [10]:

$$R = \frac{1}{2\alpha} \ln\left(\frac{v_{\rm ph}}{f}\right).$$
 (5)

Вычисленное по формуле (5) значение R для кристалла TlGaSe₂ составляло 240 Å. Это значение R примерно в 7 раз превышает среднее расстояние между центрами локализации носителей заряда в монокристалле TlGaSe₂. Значение R позволило по формуле

$$\tau^{-1} = v_{\rm ph} \cdot \exp(-2\alpha R) \tag{6}$$

определить среднее время прыжков в монокристалле TlGaSe₂: $\tau = 1.2 \times 10^{-6}$ s. Как видно, среднее время прыжков почти совпадает со временем релаксации в TlGaSe₂, полученным выше ($\tau_r = 1.1 \times 10^{-6}$ s).

По формуле [10]

$$\Delta E = 3 / (2\pi R^3 \cdot N_{\rm F}) \tag{7}$$

в TlGaSe₂ оценен энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 5 \times 10^{-3}$ eV. А по формуле: $N_t = N_F \cdot \Delta E$ оценена концентрация глубоких ловушек в TlGaSe₂, ответственных за *ac*проводимость: $N_t = 3.8 \times 10^{16}$ cm⁻³.

Заключение

Таким образом, установлено, что диэлектрические коэффициенты и проводимость монокристалла TlGaSe₂ обнаруживают при радиочастотах сильную дисперсию. Из высокочастотных диэлектрических измерений рассчитаны значения инкремента диэлектрической проницаемости $\Delta \varepsilon' = 66$, а также частоты релаксации $f_r = 8.8 \times 10^5$ Hz и времени релаксации $\tau_r = 1.1 \times 10^{-6}$ s. Установлен прыжковый механизм проводимости в переменных электрических полях радиочастотного диапазона и определены параметры локализованных состояний в запрещенной зоне монокристаллов TlGaSe₂.

Литература

 Мустафаева С.Н., Асадов М.М. Температурная зависимость степени анизотропии проводимости слоистых монокристаллов TlB^{III}C₂^{VI} (B^{III} = In, Ga; C^{VI} = S, Se) // Энциклопедия инженера-химика. 2010. № 8. С. 26–29.
Мустафаева С.Н., Мамедбейли С.Д., Асадов М.М., Мамедбейли И.А., Ахмедли К.М. Релаксационные электронные процессы в монокристаллах TlGaSe₂ // ФТП. 1996. Т. 30. № 12. С. 2154–2158.
Шелег А.У., Иодковская К.В., Курилович Н.Ф. Влияние γ-облучения на

электропроводность и диэлектрические свойства кристаллов TlGaSe₂ при низких температурах // ФТТ. 1998. Т. 40. Вып. 7. С. 1328–1331.

4. Плющ О. Б., Шелег А.У. Политипизм и фазовые переходы в кристаллах TlInS₂ и TlGaSe₂ // Кристаллография. 1999. Т. 44. № 5. С. 873–877.

5. Шелег А.У., Шевцова В.В., Гуртовой В.Г., Мустафаева С.Н., Керимова Э.М. Низкотемпературные рентгенографические исследования монокристаллов TlInS₂, TlGaS₂ и TlGaSe₂ // Журнал Поверхность, рентгеновские,

синхротронные и нейтронные исследования. 2013. №11. С. 39 – 42.

6. Шелег А.У., Гуртовой В.Г., Шевцова В.В., Мустафаева С.Н., Керимова Э.М. Изменение диэлектрических характеристик монокристаллов TlGaSe₂ под действием ионизирующего излучения // Вестник Гродненского

Государственного Университета им.Я.Купалы. Серия 2. Математика. Физика. Информатика, вычислительная техника и управление. 2013. Т.151. №2. С. 93-98.

7. Мустафаева С.Н. Дисперсия диэлектрических коэффициентов и *ас*-проводимости монокристаллов TlGa_{1-x}Co_xS₂ в радиочастотном диапазоне // Журнал Радиоэлектроники. 2009. № 4. С. 1–10.

8. В.В. Пасынков, В.С. Сорокин. Материалы электронной техники. С.Птб.-Москва-Краснодар. (2004). 368 с.

9. Физика диэлектриков. Тр. 2-ой Всесоюз. конф. / Под ред. Г.И. Сканави. М.: Из-во АН СССР. 1960. 532 с.

10. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир 1974. 472 с.

Pollak M. Frequency dependence of conductivity in amorphous solids // Phil.
Mag. 1971. V. 23. P. 519–542.

12. Мустафаева С.Н. Прыжковая проводимость в монокристаллах *p*-GaSe на постоянном токе // Неорган. материалы. 1994. Т. 30. № 5. С. 619–621.

13. Аллахвердиев К.Р., Виноградов Е.А., Нани Р.Х. и др. Колебательный спектр кристаллов TlGaS₂, TlGaSe₂ и β-TlInS₂ // Физические свойства сложных полупроводников. Баку: Элм. 1982. С. 55–63.