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Abstract— In the paper the testing of numerical methods falysis of oscillating
systems in the time domain is performed. An odailadifferential equation with
arbitrary polygonal nonlinearity was selected asst problem. The high efficiency
of trapezoidal method for analysis of self-osaitigtcircuits is shown.
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1. Introduction

Currently, there are many numerical methods forisglof ordinary differential
equations (ODE) modeling the radio-frequency ciscun the time domain. The
SPICE-like simulators and systems for engineeriatgutations Mathcad, Matlab
used Gear method, based on the multistage backifiedentiation formulas, one-
step explicit and implicit multistage Runge-Kuttaetimods, and a number of other
methods [1-3]. The choice of a numerical methoarassided to the user. In turn, the
methods have different accuracy, stability, compyexso the wrong choice of
method for solving ODE may lead to a sharp increzsine analysis time or even
result in the failure of the program. These proldemre most typical for the numerical
analysis of the self-oscillating circuits in theng domain, since the ODE system
describing such circuits is often oscillating amiéf simultaneously [3]. In the latter
case, the efficiency of a method of numerical solubf ODE requires additional
investigation.

The objective of this paper is a comparative amalgmd evaluation of the
effectiveness of modern methods for the numerichlt®on of ODEs of quite

important class of circuits generating electrieghals close in shape to the harmonic.
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The main model for the analysis of periodic ostolas in radio electronics is
the Van der Pol equation obtained from the diffeatequation oRLC-circuit if the
[-V characteristic of the nonlinear resistive elemisnapproximated by the cubic
polynomial [4, 5]. Unfortunately, getting an exalution of the van der Pol is a
laborious task [6].

If the current-voltage characteristic of the noaéin element is approximated by
a piecewise linear function, the exact solution d@ obtained quite simple.
Oscillator based on a polygonal nonlinearity isduselow as test problem [7].

2. The oscillator's equation
Fig. 1 shows a circuit of the parallel-connectededr inductance, linear

capacitance, and nonlinear resistive element wigh durrent-voltage characteristic
ic=f(v).

G(v) C —— L v

Fig. 1. Theequivalent circuit of an electronic oscillator.

The system of differential equations for voltagd arductor current takes the form
dv

____f()__.

d

L1 (1)
dt L

The differential equation for the voltage takesfthren

dv,omdv, 1, 2)
dt 2 C dt LC

The circuit generates oscillations if differentiebnductanceg(v) =df (v)/dv is
positive except for small. When approximating the current-voltage charasties of
the nonlinear elememnt =f (v) by cubic polynomial equation (2) gives rise te ¥an

der Pol. The solution of this equation for the diestate is known [6]. Unfortunately,
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the explicit solution cannot be obtained, and thereenchmark numerical solutions
only specifically calculated with high accuracy tmrtain parameters of the equation.
3. The analytical solution of the oscillator

The analytical solution of the oscillator's equatfor the stationary regime exists for
piecewise linear approximation of the nonlineardugtion's |-V curve. One variety
of such approximation is shown in Fig. 2. At eadhntipn of the function variation
v(t), which corresponds to a linear section of the &Mve, the solution can be

written as

Vi (1) = Ay eXpSit) + Ag i €XPEakt) - (3)

Here s, =—G/(2C) $[G/(20)]? ~V/(LC), G=—1,/Vp at[<V, andG =1y,
otherwise. For a periodic solution reference paah be chosen arbitrarily. We
assume that in the first time regi@xt <T, solutionv,(t) changes from —/to V,
and at the edges of interv@)} <t <T/2 the second portiom(t) is equal to . The

function v(t) over the second half of the periddepeats the solutiov(t) at the first

half of the period with the opposite sign ar@ time delay.

A G
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Fig. 2. V-A curve of the nonlinear resistive elemen

The solution of Eg. (2) contains six unknowns, simt addition to the integration
constants A, A1, Az, Az the periodl and the boundary, betweenv,(t) andv;(t)

needs to be found. To determine the unknown boigglsy andT we use continuity
of inductance current, voltage of capacitance amdtfonf (v) resulting derivative of
the solution &(t)/dt is also continuous. Stationary solution of Eq. {fa)s can be

obtained by the system of algebraic equations as
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V1 (0) = Vo i(Tg) =Vo; Vo (To) =Vo; Vo(T 12) =Vy;

_ . _ (4)
dvl/dt\t:TO —dvz/dt\t:To, dvy/dt|, _, =—dv,/dt| __ ..

Expression (3) can be used for real and complexegabfs,. In the latter case, to
simplify the solution of the system (4) it is expad to define only the first complex
integration constant, apart from a second one tadmplex conjugate of the first
constant.

The stationary solutions of (2) obtained by theatigus (3) and (4) are shown
in Fig. 3. The solution in Fig.&8is obtained foL =1 H,C=1F,V,=1V,l; =4 A.
The solution in Fig. Bis obtained foL =1 H,C=1F,V,=1V,l;=0.05 A. The
shape of received oscillations is determined byliig¢ank factorQ = /G, where
6 = (C/IL)*? andG = I, /V,. In the case shown in Fig. &= 0.25 < 1/2 and there are
relaxation oscillations. Fig. 3b corresponds to vakie of Q = 20 >>1/2, when the

solution of equation (2) is close to sinusoidaliléeteon.

v(V) T | v(V) T T
2T - 2
1 b - 1
0 - 0
gt _ |
LV, v,y SV VY
0 10 20 1(s) 0 10 20 1(s)
a) b)

Fig. 3.The overdamped (a) and underdamped (b)lasaris.

4. Testing of numerical methods for solving ODE

This paper presents the results of a comparatia®/sis of the three methods -
trapezoids, Gere and RADAUS. As a test task, tistesy (1) was used whel@) is
represented as a symmetrical piecewise lineariumshown in Fig. 2.

Trapezoidal method is one of the simplest implo#gthods for the numerical

solution of ODE used in all electronic simulatofee stability region of trapezoidal
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method coincides with the left complex half-plaaed the global error of the method
decreases with the square of the time step. Tragmzmethod for ODE system

dx/dt =f (x, t), x(0) =X, is described by the following difference scheme
Xn+1= X+ (W2)UF (X o1, ta s ) +F (X, 1)), (5)

whereh is the time stepx, andx, . ; - values of the solution of ODE in moments of
timet, andt, . ; = t, + h respectively. Trapezoidal method is an implicinBe-Kutta
method having a number of stages 1, and the order of accuragy 2.

Gear's method is the primary method of analysistrahsients in electronic
simulators. Gear's method is implemented usindgorithm that provides automatic
selection of the time steps and order of methogedding on the specified error.
Difference scheme of the Gear method is implicititrsiep formula, known as
backward differentiation formula [1]. BDF-formulaee used in practice of the order
accuracy of the first to sixth.

RADAUS is one of the most perspective Runge-Kutethads [2]. The RADAUS
method is based on a three-stage fully implicit g&+Kutta method of the fifth order
of accuracy. RADAUS method requires solving a syst# algebraic equations with
the dimension of three times higher than dimensfoc@DE of specified circuit.

To assess the effectiveness of the above-descnbexrical methods we use here
the methodology proposed in [9]. As a criterion tioe efficiency of the method we
will use the accuracy of the basic parameters esitom of generated oscillations —
the frequency and amplitude. The current relatster@tion errors of frequency and

amplitude are determined using the following relasi respectively

An(® = Ano|
Ao |

Here o(t) and A.(t) are assessments of the frequency and amplitude¢hef

a(t) — g

Wy

NOE

Eu(t) :‘

oscillations derived from the solution of (1) bymerical methodsp, andA, are the
exact values of the same parameters obtained drasig of (3) and (4).
Fig. 4 and Fig. 5 show the relative estimation mnaf frequency and amplitude

of stationary oscillations at two oscillating systguality factorQ = 20 andQ = 100.
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The system of equations (1) was carried out nurallyicat a predetermined
maximum time step.x = T/1000, wherdl = 2r/w, - oscillation period.

The calculated values of frequency and amplitudd®fbscillations:
a)Q=20L=1H,C=1FVo=1V,ly=0.05A):
wo = 0.99989149411682 radh,, = 2.475477417618089 V;
b)Q=100(L=1H,C=1FV,=1V,l,=0.01A):
®o = 0.99999565970188 radA,o = 2.475416990116814 V.

&u(?) ' ! ' Eull) ' ' '
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Fig. 4. The time variation of the relative erréfrequency in the solution (1) by
methods ofrapezoids BDF, andRADAUS. a) Q = 20, b) Q = 100.
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Fig. 5. Time variation of the relative error of theplitude in the solution (1) by
methods ofrapezoids BDF, andRADAUS. a) Q = 20, b) Q = 100.
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To assess the period of oscillation the linearpakation of numerical solution at the
points of v(t) changes sign was used. To estimate the amplitbdequadratic
interpolation is ofv(t) was used at the points of local extremes. Thealrdonditions
were v(0) =Aqo, 1(0) = 0. A monitoring interval is selected so astow the onset
of steady state.

Fig. 4 shows for all the considered numerical mashthe estimating of the
frequency error has the same order of magnitudeéurm as shown in Fig. 5, the
estimating of the amplitude error for the methodhaf trapezoids is about two orders
of magnitude less than similar error of Gear andDRAIS due to theP-stability of
trapezoids [10].

5. Conclusions

Results of the numerical analysis methods testimgsélf-oscillating circuit in
the time domain were obtained to compare the acgwhanalysis results by various
methods. The oscillator with a nonlinear elementiigaa piecewise linear current-
voltage characteristics was considered as a tegirttblem. This task is important for
practice, because the discontinuity of derivativdsthe solution in oscillatory
systems is possible not only by reason of the ntetdi@pproximation of V-A curve
but also occurs in the analysis of high-Q circuitgking in current mode of the cut-
off [11].

APPENDIX

Half-period’s numerical solution

0 = A [expt) + Ao [explyt), 0<t<Ty;
V()_{%@Xp@t)+ﬁﬂﬁxp$4t), Tost<T/2

a) Q= 20:
To=0.831742198514185%;= 6.283867143733802;
A;=— 0.5--1.11864478698996A; = — 0.54009929904588 j-1.18335071450520;

O 0 0 O
Ao= A A= Ag; 5= 0.025 +j[3/0.999375; s, =5 3= —S; 4 =S3-
b) Q = 100:

Tp=0.83171243409846T,= 6.28321257/81953;
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—0.54-1.1294252349926; = — 0.50788674459494)-1.14224014922639;
U O g O
A A= A3 5=0.005 +jE/09999; s =5 5= - 4=z
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