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Abstract― In the paper the testing of numerical methods for analysis of oscillating 

systems in the time domain is performed. An oscillator’ differential equation with 

arbitrary polygonal nonlinearity was selected as a test problem. The high efficiency 

of trapezoidal method for analysis of self-oscillating circuits is shown. 
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1. Introduction 

Currently, there are many numerical methods for solving of ordinary differential 

equations (ODE) modeling the radio-frequency circuits in the time domain. The 

SPICE-like simulators and systems for engineering calculations Mathcad, Matlab 

used Gear method, based on the multistage backward differentiation formulas, one-

step explicit and implicit multistage Runge-Kutta methods, and a number of other 

methods [1-3]. The choice of a numerical method is provided to the user. In turn, the 

methods have different accuracy, stability, complexity, so the wrong choice of 

method for solving ODE may lead to a sharp increase of the analysis time or even 

result in the failure of the program. These problems are most typical for the numerical 

analysis of the self-oscillating circuits in the time domain, since the ODE system 

describing such circuits is often oscillating and stiff simultaneously [3]. In the latter 

case, the efficiency of a method of numerical solution of ODE requires additional 

investigation. 

The objective of this paper is a comparative analysis and evaluation of the 

effectiveness of modern methods for the numerical solution of ODEs of quite 

important class of circuits generating electrical signals close in shape to the harmonic. 
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The main model for the analysis of periodic oscillations in radio electronics is 

the Van der Pol equation obtained from the differential equation of RLC-circuit if the 

I-V characteristic of the nonlinear resistive element is approximated by the cubic 

polynomial [4, 5]. Unfortunately, getting an exact solution of the van der Pol is a 

laborious task [6]. 

If the current-voltage characteristic of the nonlinear element is approximated by 

a piecewise linear function, the exact solution can be obtained quite simple. 

Oscillator based on a polygonal nonlinearity is used below as test problem [7]. 

2. The oscillator's equation  

Fig. 1 shows a circuit of the parallel-connected linear inductance, linear 

capacitance, and nonlinear resistive element with the current-voltage characteristic 

iG = f(v). 

 

Fig. 1. The equivalent circuit of an electronic oscillator. 

 

The system of differential equations for voltage and inductor current takes the form 
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The differential equation for the voltage takes the form 
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The circuit generates oscillations if differential conductance dvvdfvg )()( =  is 

positive except for small v. When approximating the current-voltage characteristics of 

the nonlinear element iG = f (v) by cubic polynomial equation (2) gives rise to the Van 

der Pol. The solution of this equation for the steady state is known [6]. Unfortunately, 
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the explicit solution cannot be obtained, and there is benchmark numerical solutions 

only specifically calculated with high accuracy for certain parameters of the equation.  

3. The analytical solution of the oscillator 

The analytical solution of the oscillator's equation for the stationary regime exists for 

piecewise linear approximation of the nonlinear conduction's  I-V curve. One variety 

of such approximation is shown in Fig. 2. At each portion of the function variation 

v(t), which corresponds to a linear section of the I-V curve, the solution can be 

written as 

)exp()exp()( ,2,2,1,1 tsAtsAtv kkkkk += .    (3) 

Here )(1])2([)2( 2 LCCGCGsk −−= ∓ , 00 VIG −=  at 0Vv <  and 00 VIG =  

otherwise. For a periodic solution reference point can be chosen arbitrarily. We 

assume that in the first time region 00 Tt <≤  solution v1(t) changes from  –V0 to V0 

and at the edges of interval 20 TtT <≤  the second portion v2(t) is equal to V0. The 

function v(t) over the second half of the period T repeats the solution v(t) at the first 

half of the period with the opposite sign and T/2 time delay. 

 

Fig. 2. V-A curve of the nonlinear resistive element. 

The solution of Eq. (2) contains six unknowns, since in addition to the integration 

constants A1,1, A1,2, A2,1, A2,2 the period T and the boundary T0  between v1(t) and v2(t) 

needs to be found. To determine the unknown boundaries T0 and T we use continuity 

of inductance current, voltage of capacitance and function f (v) resulting derivative of 

the solution dv(t)/dt is also continuous. Stationary solution of Eq. (2) thus can be 

obtained by the system of algebraic equations as 
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Expression (3) can be used for real and complex values of sk. In the latter case, to 

simplify the solution of the system (4) it is expedient to define only the first complex 

integration constant, apart from a second one to be complex conjugate of the first 

constant. 

The stationary solutions of (2) obtained by the equations (3) and (4) are shown 

in Fig. 3. The solution in Fig. 3a is obtained for L = 1 H, C = 1 F, V0 = 1 V, I0 = 4 A. 

The solution in Fig. 3b is obtained for L = 1 H, C = 1 F, V0 = 1 V, I0 = 0.05 A. The 

shape of received oscillations is determined by the LC-tank factor Q = σ/G, where 

σ = (C/L)1/2 and G = I0 /V0. In the case shown in Fig. 3a Q = 0.25 < 1/2 and there are 

relaxation oscillations. Fig. 3b corresponds to the value of Q = 20 >>1/2, when the 

solution of equation (2) is close to sinusoidal oscillation. 

  

a)       b) 

Fig. 3.The overdamped (a) and underdamped (b) oscillations. 

 

4. Testing of numerical methods for solving ODE 

This paper presents the results of a comparative analysis of the three methods - 

trapezoids, Gere and RADAU5. As a test task, the system (1) was used where f(v) is 

represented as a symmetrical piecewise linear function shown in Fig. 2. 

Trapezoidal method is one of the simplest implicit methods for the numerical 

solution of ODE used in all electronic simulators. The stability region of trapezoidal 
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method coincides with the left complex half-plane, and the global error of the method 

decreases with the square of the time step. Trapezoidal method for ODE system 

dx/dt = f (x, t), x(0) = x0 is described by the following difference scheme 

( ) )],(),([2 111 nnnnnn tth xfxfxx +⋅+= +++ ,    (5) 

where h is the time step, xn and xn + 1 - values of the solution of ODE in moments of 

time tn and tn + 1 = tn + h respectively. Trapezoidal method is an implicit Runge-Kutta 

method having a number of stages s = 1, and the order of accuracy p = 2. 

Gear's method is the primary method of analysis of transients in electronic 

simulators. Gear's method is implemented using an algorithm that provides automatic 

selection of the time steps and order of method, depending on the specified error. 

Difference scheme of the Gear method is implicit multistep formula, known as 

backward differentiation formula [1]. BDF-formulae are used in practice of the order 

accuracy of the first to sixth. 

RADAU5 is one of the most perspective Runge-Kutta methods [2]. The RADAU5 

method is based on a three-stage fully implicit Runge-Kutta method of the fifth order 

of accuracy. RADAU5 method requires solving a system of algebraic equations with 

the dimension of three times higher than dimension of ODE of specified circuit. 

To assess the effectiveness of the above-described numerical methods we use here 

the methodology proposed in [9]. As a criterion for the efficiency of the method we 

will use the accuracy of the basic parameters estimation of generated oscillations – 

the frequency and amplitude. The current relative estimation errors of frequency and 

amplitude are determined using the following relations respectively 
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Here ω(t) and Am(t) are assessments of the frequency and amplitude of the 

oscillations derived from the solution of (1) by numerical methods; ω0 and Am0 are the 

exact values of the same parameters obtained on the basis of (3) and (4).  

Fig. 4 and Fig. 5 show the relative estimation errors of frequency and amplitude 

of stationary oscillations at two oscillating system quality factor Q = 20 and Q = 100. 
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The system of equations (1) was carried out numerically at a predetermined 

maximum time step hmax = T/1000, where T = 2π/ω0 - oscillation period. 

The calculated values of frequency and amplitude of the oscillations: 

a) Q = 20 (L = 1 H, С = 1 F, V0 = 1 V, I0 = 0.05 А): 

ω0 = 0.99989149411682 rad/s, Am0 = 2.475477417618089 V; 

b) Q = 100 (L = 1 H, С = 1 F, V0 = 1 V, I0 = 0.01 А): 

ω0 = 0.99999565970188 rad/s, Am0 = 2.475416990116814 V. 

 

  

a)                                         b) 

Fig.  4. The time variation of the relative error of frequency in the solution (1) by 
methods of trapezoids, BDF, and RADAU5. a) Q = 20, b) Q = 100. 

 

a)                                          b) 

Fig. 5. Time variation of the relative error of the amplitude in the solution (1) by 
methods of trapezoids, BDF, and RADAU5. a) Q = 20, b) Q = 100. 
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To assess the period of oscillation the linear interpolation of numerical solution at the 

points of v(t) changes sign was used. To estimate the amplitude the quadratic 

interpolation is of v(t) was used at the points of local extremes. The initial conditions 

were  v(0) = Am0 ,  i(0) = 0. A monitoring interval is selected so as to show the onset 

of steady state. 

Fig. 4 shows for all the considered numerical methods the estimating of the 

frequency error has the same order of magnitude. In turn, as shown in Fig. 5, the 

estimating of the amplitude error for the method of the trapezoids is about two orders 

of magnitude less than similar error of Gear and RADAU5 due to the P-stability of 

trapezoids [10]. 

5. Conclusions 

Results of the numerical analysis methods testing for self-oscillating circuit in 

the time domain were obtained to compare the accuracy of analysis results by various 

methods. The oscillator with a nonlinear element having a piecewise linear current-

voltage characteristics was considered as a test the problem. This task is important for 

practice, because the discontinuity of derivatives of the solution in oscillatory 

systems is possible not only by reason of the method of approximation of V-A curve 

but also occurs in the analysis of high-Q circuits working in current mode of the cut-

off [11]. 

 

APPENDIX 

Half-period’s numerical solution 


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a) Q = 20:  

T0 = 0.8317421985141854; T = 6.283867143733802; 

A1 = – 0.5 – j·1.11864478698996; A3 = – 0.54009929904588 – j·1.18335071450520;  

A2 = 
∗
1A ; A4 = 

∗
3A ; s1 = 0.025 + 999375.0⋅j ; 

∗
= 12 ss ; s3 = – s2;  

∗
= 34 ss . 

b) Q = 100: 

T0 = 0.831712434098467; T = 6.2832125781953; 
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A1 =  – 0.5 – j∙1.1294252349926; A3 = – 0.50788674459494 – j∙1.14224014922639; 

A2 = 
∗
1A ; A4 = 

∗
3A ; s1 = 0.005 + 9999.0⋅j ; 

∗
= 12 ss ; s3 = – s2;  

∗
= 34 ss . 
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