10. ДЕКОМПОЗИЦИОННЫЕ МЕТОДЫ ОБРАБОТКИ ДАННЫХ ALOS – PALSAR ПО БАЙКАЛЬСКОЙ ПРИРОДНОЙ ТЕРРИТОРИИ

Ширеторов И.Д.⁽¹⁾, <u>Дарижапов Д.Д.</u>⁽¹⁾, Кирбижекова И.И.⁽¹⁾, Быков М.Е⁽²⁾. ⁽¹⁾Отдел физических проблем Бурятского Научного Центра СО РАН, ⁽²⁾ Кафедра ЭВС ВСГТУ.

Аннотация. В статье исследуется возможности применения полной матрицы рассеяния полнополяриметрических данных радиолокатора с синтезированной апертурой ALOS-PALSAR в L-диапазоне за период 2006-2009 г.г. по Байкальской природной территории для проведения классификации природных и искусственных объектов. Для анализа результатов использованы наземные данные по территории спутниковых съемок. Проведено сравнение результатов обработки для разных видов земной поверхности, растительности, искусственных объектов.

введение

Радиолокаторы с синтезированной апертурой (РСА) стали мощным средством исследования Земли из космоса [1]. Регистрация данных полной матрицы рассеяния открывает новые возможности для изучения отражательных свойств природных и искусственных объектов методами поляриметрии. Поляриметрические РСА с возможностью расширения потока информации до четырех каналов позволяют нам свойства изучить отражательные различных типов земной поверхности И автоматически классифицировать данные дистанционного зондирования. Появление данных поляриметрических РСА привело к возникновению совершенно новых обработки данных, позволяющие извлекать принципиально методик новую информацию об отражающих свойствах природных и искусственных объектах. Очень выглядят исследования отражения радиосигнала от разных важными видов растительности и типов поверхности [2].

При рассеянии волн на сложных радиолокационных объектах, обладающих случайным распределением рассеивающих центров, электрический вектор рассеянного поля в дальней зоне будет представлять собой случайную функцию положения, определяемого некоторым радиус-вектором [3]. В общем случае при рассеянии электромагнитных волн радиолокационными объектами имеет место преобразование поляризации волн. Полнополяриметрическая съемка позволяет регистрировать полную

95

Зондирование земных покровов радарами с синтезированной апертурой

матрицу рассеяния для каждого радиолокационного объекта и позволяет вычислить их в любом поляризационном базисе. Это привело к появлению новых методов анализа данных дистанционного зондирования и процедур их автоматической обработки.

МЕТОДЫ ДЕКОМПОЗИЦИИ МАТРИЦЫ РАССЕЯНИЯ

Основной задачей поляризационной радиолокации является декомпозиция матрицы рассеяния радиолокационного объекта с целью выделения некоторого поляризационного параметра, в достаточной степени характеризующего свойства объекта и допускающего непосредственное измерение и отображение на индикаторе РЛС.

Для решения этой задачи применяется аппарат матричного исчисления. Методами анализа и декомпозиции матрицы Стокса $\langle S \rangle$, матрицы когерентности $\langle T \rangle$ и ковариантной матрицы $\langle C \rangle$ можно наиболее полно классифицировать рассеивающие свойства природных и искусственных объектов.

В работе использованы данные радара с синтезированной апертурой ALOS – PALSAR. Космический аппарат ALOS был запущен 24 января 2006 г. Японским аэрокосмическим агентством JAXA. КА ALOS оснащен радаром L-диапазона (PALSAR) с длиной волны – 24 см., предназначенным для круглосуточного и всепогодного наблюдения Земли.

Радарные изображения имеют целый ряд особенностей, как радиометрические, так и геометрические. Исходные радарные данные, не приведенные к наземной дальности сильно «вытянуты» в азимутальном направлении. Также следует отметить, что из-за специфической геометрии съемки, исходные радарные изображения, в зависимости от орбиты, либо перевернуты зеркально в горизонтальной плоскости (нисходящая орбита), либо перевернуты зеркально в вертикальной плоскости (восходящая орбита).

КОГГЕРЕНТНОЕ РАССЕЯНИЕ

В случае поляриметрического радара измеряется полная матрица рассеяния – матрица Стокса размерностью 2 х 2:

$$\mathbf{S} = \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix}$$
(1)

96

Зондирование земных покровов радарами с синтезированной апертурой

Матрица Стокса, где первая буква означает поляризацию сигнала на передающей антенне, а вторая на приемной.

При декомпозиции матрицы Стокса в системе матриц Паули с учетом того, что S _{by} =S _w получается следующее выражение [2,3]:

$$\mathbf{S} = \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix} = \alpha * S_a + \beta * S_b + \gamma * S_d$$
(2)

Тогда матрицу Стокса можем представить в виде суммы трех матриц:

Матрица S_a есть матрица рассеяния от плоской поверхности, идеальной сферы, трехгранного уголкового отражателя, т.е. это однократное рассеяние без изменения поляризации. Матрица S_b матрица рассеяния двойного и более кратного отражения от строений, деревьев, которая меняет одну из ортогональных составляющих поляризации на противоположную. Матрица S_d представляет рассеяние от двойной плоскости с углом ориентации 45 градусов, при отражении от которой волна меняет поляризацию на ортогональную, такое рассеяние характерно для растительного покрова. Коэффициенты α , β , γ характеризуют вклад соответствующих механизмов рассеяния в общую матрицу рассеяния.

Рис.1. RGB-изображение разложения Паули Дубининского леса (дельта реки Селенга) по данным ALOS – PALSAR от 28 сентября 2006 г.

Этот метод декомпозиции дает нам возможность выявить расположение полей, водных поверхностей, строения и растительности. На рис. 1 представлен результат

разложения Паули, где, таким образом, комплексный коэффициент $|\alpha|^2$ (синий цвет) определяет вклад в рассеяние отражения от плоской поверхности, коэффициент $|\beta|^2$ (красный цвет) определяет вклад двойного или многократного отражения, $|\gamma|^2$ (зеленый цвет) определяет вклад рассеяния от плоскости ориентированной под углом 45°.

Крогагер предложил альтернативную форму представления матрицы рассеяния, как комбинацию рассеяний от сферы, двухгранного уголкового отражателя и спирали, где последние два параметра зависят от угла ориентации θ

Матрица рассеяния выглядит следующим образом:

$$S = \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix} = \begin{pmatrix} a+b & c \\ c & a-b \end{pmatrix} =$$

$$e^{j\varphi} * \left\{ k_s * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + e^{j\varphi_s} * \left\langle k_d \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} + k_h * e^{\pm j2\theta} \begin{pmatrix} 1 & \pm j \\ \pm j & 1 \end{pmatrix} \right\rangle \right\}$$

$$(3)$$

 ϕ - фазовая составляющая, которая зависит от расстояния между радаром и радиолокационным объектом. Коэффициент k_s определяет вклад в рассеяние от плоской поверхности. Коэффициент k_d определяет вклад в рассеяние от двухгранного уголкового отражателя. Коэффициент k_b определяет вклад в рассеяние от спирали.

Рис. 2. RGB – изображение разложения Крогагер Дубининского леса (дельта реки Селенга) по данным ALOS – PALSAR от 28 сентября 2006 г.

НЕКОГГЕРЕНТНОЕ РАССЕЯНИЕ

Определение матрицы когерентности $\langle T \rangle$ для описания поляризационных свойств рассеянного поля дает нам возможность анализа и классификации сложных радиолокационных объектов с помощью аппарата матричного исчисления. Одним из наиболее эффективных методов классификации является метод разложения матрицы когерентности на собственные вектора и собственные числа.

В 1997 году S.R.Cloude и E.Pottier предложили метод извлечения средних характеристик на основе статистик второго порядка [4]. В данной работе был применен анализ собственных векторов когерентной матрицы $\langle T \rangle$ позволяющий декомпозицию по типам механизмов рассеяния.

Рис. 3. Изображение энтропии H, анизотропии A, и а дельты реки Селенга от 28 сентября 2006 г. Градация цвета от синего к красному по мере увеличения параметров.

Степень статистического беспорядка для каждого объекта характеризуется энтропией

$$H = -\sum_{i=1}^{3} P_i \log_3 P_i$$
 (4)

Зондирование земных покровов радарами с синтезированной апертурой

где P_i – вероятности, полученные из собственных значений $\langle T \rangle$

$$P_i = \frac{\lambda_i}{\sum_{i=1}^3 \lambda_i}$$
(5)

На рис.3.а водная поверхность и гладкие поля характеризуются низкими значениями Н и слабой деполяризацией радарного сигнала. Лесные массивы и горная область - высокими значениями Н и значительной степенью деполяризации.

Второй параметр – анизотропия

$$A = \frac{\lambda_2 - \lambda_3}{\lambda_2 + \lambda_3} \tag{6}$$

На рис 3.б в лесных массивах и горных областях А принимает значения близкие к 0, следовательно, второе и третье собственные значения почти равны или близки к 0, что свидетельствует о наличии доминирующего механизма рассеяния на данных участках радарного изображения. Поверхность Байкала, участки вдоль русла реки и вдоль побережья имеют среднюю и высокую анизотропию, что говорит о присутствии второго механизма рассеяния.

Третий параметр – α характеризует доминирующий механизм рассеяния. альфа.

$$\alpha = \alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 \tag{7}$$

На рис 3.в видны участках с низкими α , где преобладает механизм рассеяния от поверхности, при среднем α – дипольное или однократное рассеяние, более высокие α соответствуют объемному рассеянию. Несмотря на наличие населенных пунктов, нет участков с очень большими α (близкими к 90°).

ДВУМЕРНАЯ КЛАССИФИКАЦИЯ

Больше возможностей даёт сочетание параметров. Например: участок Байкала характеризуется низкими значениями H, α и средними значениями A, что свидетельствует об относительной гладкости водной поверхности, действии в основном механизмов рассеяния от поверхности и наличии как минимум двух типов рассеяния с примерно равным весом. Для участков леса характерны низкие значения A, средние значения α и высокие значения H, что свидетельствует о доминировании объёмного рассеяния и высокой степени статистического беспорядка и т.д.

Рис. 4.а-б. Двумерная классификация Н-А, Н-α, А-α. Слева распределение пикселей на двумерной диаграмме. Справа результат классификации

Применение двумерной классификации Н-А, Н-а, А-а даёт возможность выделить до 8 кластеров в соответствии с типами механизмов рассеяния (см. рис.4). Слева представлены распределение пикселей исследуемой сцены на двумерных диаграммах, где по осям координат отложены соответствующие параметры. Каждая диаграмма разбита на основные характерные зоны [4]. Например, на рис.4.бс. по оси абсцисс отложены значения энтропии от 0 до 1, причём диапазон значений разделен на три зоны: низкая H, средняя H, высокая H. По оси ординат – α, от 0° до 90° с разделением на три зоны. На диаграмме пиксели исследуемой сцены распределены по 4-5 зонам. В соответствии с распределением пикселей можно построить классификационную картину. Результаты классификации также представлены на рисунке 4. При определённых условиях можно провести трёхмерную классификацию с учётом всех трёх параметров и выделить до 16 кластеров (для данной сцены до 10). Применение методов классификации на основе Н-А-а декомпозиции позволяет выделить кластеры с чётко обоснованными различиями по типам и распределению механизмов рассеяния.

ЗАКЛЮЧЕНИЕ

По результатам классификации можно сделать следующие выводы:

 Декомпозиция матрицы Стокса в системе матриц Паули и разложения Крогагера позволяют наглядно оценить типы природных объектов по степени неоднородности: водная поверхность, ровная поверхность с малой растительностью, поверхности с высокой растительностью и искусственные строения.

- Методы разложения матрицы когерентности в системе собственных чисел и собственных векторов позволяет разделить природные объекты на кластеры с различными механизмами рассеяния.
- 3. Комбинация этих методов декомпозиции матрицы рассеяния является эффективными для определения физических характеристик природных и искусственных объектов, что очень важно для решения экологических и природноресурсных и хозяйственных задач.

ЛИТЕРАТУРА

- 1. Boerner W. –M. The manual of Remote Sensing. 3rd Edition. ASPRS publishing, Bethesda, MD, 1997.
- 2. Козлов А.И., Логвин А.И., Сарычев В.А. Научная серия. Поляризация радиоволн. М. Радиотехника. 2005-2007 г.г.
- 3. Татаринов В.Н., Татаринов С.В., Лигтхард Л.П. Введение в современную теорию поляризации радиолокационных сигналов. Томск. Изд. Том. Ун-та. 2006 г.
- 4. Cloude S.R. and E. Pottier, 1997, "An Entropy-Based Classification Scheme for Land Applications of Polarimetric SAR", IEEE Trans GRS, vol. 35(1), pp. 68-78.