Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 4
Contents

Full text in Russian (pdf)
Russian page

 

DOI 10.30898/1684-1719.2020.4.14

UDC 539.2

 

STUDY OF THE STRUCTURE OF BIOCOMPATIBLE NANOMATERIALS BASED ON SILICON DIOXIDE

 

A. F. Belyanin 1, A. S. Bagdasaryan 2,3, N. S. Sergeeva 4, S. A. Bagdasaryan 2, E. R. Pavlyukova 3

 1 Central Research Technological Institute “Technomash”, Ivan Franko Str., 4, Moscow, 121108, Russia

2 Scientific Engineering Center “Technological developments of telecommunication and radio frequency identification”, JSC, Sukharevskaya Sq.,4-1 Moscow, 127051, Russia

3 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya Str., 11-1, Moscow, 125009, Russia

4 Hertsen Moscow Oncology Research Center, 3, Vtoroy Botkinskiy Proyezd, Moscow, 125284, Russia

 

The paper is received on April 21, 2020

 

Abstract. Construction of bio-artificial organs and tissues in reconstructive plastic surgery depends largely on the development of the cell scaffolds using micro- and nanoparticles of different nature. In the present paper, we consider the interaction of microparticles of opal matrix powders (regular packings of spherical nanoparticles of amorphous SiO2 with a diameter of 200–260 nm) and geyserite (a natural analogue of opal matrixes) with cell systems. The biocompatibility of opal matrixes (geyserite) and the cell growth dynamics in an immortalized human fibroblast model were evaluated. The features of the formation and structure of the biocomposite material “opal matrix (geyserite) - cell culture” have been considered. It was demonstrated that cell reproduction take place on the surface of opal matrix powder (geyserite) microparticles with a crosswise size from units up to tens of micrometers. Given “in vitro” investigation results of the acute cytotoxicity and matrix (adhesive) properties of opal matrices and geyserite microparticles, as well as “in vivo” of their biocompatibility, make us possible to consider the formation of three-dimensional composite by cell systems and microparticles as an element of self-organization.

The stability of the three-dimensional two-phase structure (“opal matrix (geyserite) - cell culture”) has been determined, due to the fact that the solid phase (opal matrix powder or geyserite microparticles) reinforces the biological mass, creating the possibility of volumetric formation of the last one.

Keywords: opal matrixes, geyserites, biocomposite materials, scanning electron microscopy (SEM).

References

1.  Urusov V.S., Samoilovich M.I., Sergeeva N.S., Belyanin A.F., Shvanskaya L.V., Sviridova I.K., Kirsanova V.A., Bychkov A.Y., Achmedova S.A., Kleshcheva S.M.  Formation of biocomposites based on natural geyserites and synthetic opals. 2008. Vol. 423. P. 473-477.

2. Belyanin A.F., Bagdasaryan A.S., Gulyaev Yu.V., Sergeeva N.S., Bagdasaryan S.A., Pavlyukova E.R. Biocompatible nano-materials based on opal matrixes. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. Vol. 5. URL: http://jre.cplire.ru/jre/may19/3/text.pdf DOI 10.30898/1684-1719.2019.5.3 (In Russian)

3. Urusov V.S., Shvanskaya L.V., Bychkov A.Y., Mokhov A.V., Labutova E.A. Microstructures of silica deposits from Kamchatka hot springs. Doklady Earth Sciences. 2008. Vol. 418. P. 123-127. DOI: 10.1134/S1028334X08010273

4. Urusov V.S., Shvanskaya L.V., Bychkov A.Y., Mokhov A.V., Labutova E.A. Microstructural studies of Kamchatka geyserites.  Moscow University Geology Bulletin. 2008. Vol. 63. Article number: 311. DOI:  10.3103/S0145875208050037

5. Inagaki F., Motomura Y., Ogata S. Microbial silica deposition in geothermal hot waters. Appl. Microbiol. Biotechnol. 2003. Vol. 60. P. 605–611.

6. Armstronga E., O’Dwyer C. Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage.  Journal of materials chemistry C. 2015. Vol. 3. No. 24. P. 6109–6143.

7. Tuyen L.D., Wu C.Y., Anh T.K., Minh L.Q.Kan H-C., Hsu C.C. Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals.  Journal of Experimental Nanoscience. 2012. Vol. 7. No. 2. P. 198–204.

8. Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices.  Russian Journal of General Chemistry. 2013. Vol. 83. No. 11. P. 2148–2158.

9. Mıguez H., Blanco A., Lopez C., Meseguer F., Yates H.M., Pemble M.E., Lopez-Tejeira F., Garcıa-Vidal F.J., Sanchez-Dehesa J. Face centered cubic photonic bandgap materials based on opal-semiconductor composite.  Journal of Lightwave Technology. 1999. Vol. 17. No. 11. P. 1975–1981.

10. Nishijima Y., Ueno K., Juodkazis S., Mizeikis V., Misawa H., Tanimura T., Maeda K. Inverse silica opal photonic crystals for optical sensing applications.  Optics Express. 2007. Vol. 15. No. 20. P. 12979–12988.

11. Samoilovich M.I., Belyanin A.F., Bagdasaryan A.S., Bovtun V. The structure and dielectric properties of nanocomposites: opal matrixes - titanium oxides and rare-earth titanates. Tonkiye khimicheskiye tekhnologii - Fine Chemical Technologies. 2016. Vol. 11. No. 2. P. 66–73 (In Russian)

12. Belyanin A.F., Bagdasaryan A.S., Bagdasaryan S.A., Pavlyukova E.R. Nanostructured materials based on opal matrixes and magnetic oxides Ni(Ño)-Zn-Fe. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 3. http://jre.cplire.ru/jre/mar20/15/text.pdf. DOI 10.30898/1684-1719.2020.3.15 (In Russian)

13. Pakhomov Y.A., Rinkevich A.B., Perov D.V., Kuznetsov E.A., Belyanin A.F. Dielectric permittivity of artificial crystals based on opal matrices with ZnO particles in millimeter waveband. Journal of Infrared, Millimeter, and Teraherts Waves. 2019. Vol. 40. No. 3. P. 348–356.

14. Rinkevich A.B., Perov D.V., Samoilovich M.I., Belyanin A.F., Pashchenko P.V., Timofeev M.A. Opal matrixes with multilayer structure Co/Ir and 3D-nanocomposites: opal matrix – Co compounds. Inzhenernaya fizika - Engineering Physics. 2009. Vol. 10. P. 18–24. (In Russian)

15Samoilovich M.I., Belyanin A.F., Tsvetkov M.Y., Kleshcheva S.M., Rinkevich A.B., Bovtun V., Kempa M., Nuzhnyy D. Optical, magnetic, and dielectric properties of opal matrices with intersphere nanocavities filled with crystalline multiferroic, piezoelectric, and segnetoelectric materials. Russian Journal of General Chemistry. 2013. Vol. 83. No. 11. P. 2132–2147.

16. Sarychev A.K., Shalaev V.M. Electrodynamics of metamaterials. World Scientific and Imperial College Press, 2007. 200 p.

17. Kong J.A. Electromagnetic wave interaction with stratified negative isotropic media.  Progress in Electromagnetics Research, PIER. 2002. Vol. 35. P. 1–52.

18. Kimura T., Goto T., Shintani H., Ishizaka K., Amira T., Tokura Y. Magnetic control of ferroelectric polarization.  Nature. 2003. Vol. 426. P. 55–58.

19. Hill N.A. Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B. 2000. Vol. 104 (29). P. 6694–6709.

20. Inomata A., Kohn K. Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5. Journal of Physics: Condensed Matter. 1996. Vol. 8. No. 15. P. 2673–2678.

21. Bramwell S.T., Field M.N., Harris M.J., Ivan M.J. Bulk magnetization of the heavy rare earth titanate pyrochlores – a series of model frustrated magnets.  Journal of Physics: Condensed Matter. 1999. No. 12(4). P. 483. DOI: 10.1088/0953-8984/12/4/308.

22. Belyanin A.F., Bagdasaryan A.S., Gulyaev Yu.V., Yurin A.I., Pavlyukova E.R. Structure, dielectric and magnetic properties of nanocomposites based on opal matrixes, phosphates and vanadates of metals.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No.5. URL: http://jre.cplire.ru/jre/may19/4/text.pdf. DOI: 10.30898/1689-1719.2019.5.4 (In Russian)

23. Belyanin A.F., Bagdasaryan A.S., Bagdasaryan S.A., Borisov V.V., Pavlyukova E.R. X-radiation under pulse laser impact on opal matrix. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No.6. (In Russian)

24. Belyanin A.F., Samoilovich M.I., Zhitkovskiy V.D., Pashchenko P.V., Timofeev M.À., Kovalskiy K.A., Kleshcheva S.M., Borisov V.V., Petukhov K.Y. Multilayer non-heated cathodes. Nano- i mikrosistemnaya tekhnika  - Nano- and Microsystems Technology. 2005. Vol. 8. P. 39–48. (In Russian)

25. Belyanin A.F., Borisov V.V., Bagdasaryan A.S. Nanostructured carbon materials in emission electronics. Rossiyskiy tekhnologicheskiy zhurnal  - Russian Technological Journal. 2017. Vol. 5. No. 3 (17). P. 22–40. (In Russian)

26.  Goldstein J., Newbury D.E., Echlin P., Joy, D.C., Fiori C.E., Lifshin E. Scanning electron microscopy and X-ray microanalysis. ISBN 978-1-4615-0215-9. Springer Scienc+ Business Media. New York 2003. 673 p.

 

 For citation:

Belyanin A.F., Bagdasaryan A.S., Sergeeva N.S., Bagdasaryan S.A., Pavlyukova E.R. Study of the structure of biocompatible nanomaterials based on silicon dioxide. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 4. Available at http://jre.cplire.ru/jre/apr20/14/text.pdf.  DOI 10.30898/1684-1719.2020.4.14