Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹4

Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2025.4.10

 

 

 

PREDICTION OF CONDUCTIVE INTERFERENCE

FROM ELECTRIC POWER CONVERTER

USING ARTIFICIAL NEURAL NETWORK

 

Z.M. Gizatullin, R.R. Mubarakov

 

Kazan National Research Technical University named after A.N. Tupolev

420111, Russia, Kazan, Karl Marx str., 10

 

The paper was received January 15, 2025.

 

Abstract. Conductive interference occurs during operation of power converters and is a significant problem for complex electronic systems. Therefore, when designing electronic systems, it is necessary to evaluate the possible parameters of such interference in advance and take protection measures. The article proposes a practical technique for predicting the amplitude and duration of conductive interference from electricity converters using an artificial neural network. As an example, an experimental study of the parameters of conductive interference from the layout of the electricity generation system on board the aircraft was implemented. A data set for teaching a neural network has been prepared. Examples of training of an artificial neural network based on experimental data are given. For the maximum amplitude and duration of conductive interference, an acceptable divergence of the results is achieved at 795 and 1422 of the training era, respectively. For test sample, it was possible to achieve an average absolute percentage error 14.2 % and 20.3 %, to predict the amplitude and duration of conductive interference. Examples of forecasting the parameters of conductive interference using a trained neural network are given. The results obtained indicate the possibility of practical use of an artificial neural network to solve the tasks of predicting conductive interference. Further prospects for using this tool are seen in the tasks of forecasting side -by -power electromagnetic radiation from electronic devices, exposure to ultra -short pulses, etc.

Key words: artificial neural network, conducted interference, electric power converter, experiment, forecasting, technique.

Financing: The work was supported by the Kazan National Research Technical University named after A.N. Tupolev Strategic Academic Leadership Program (“PRIORITET–2030”).

Corresponding author: Gizatullin Zinnur Marselevich, zmgizatullin@kai.ru

 

References

1. Keller R. B. Design for Electromagnetic Compatibility--In a Nutshell: Theory and Practice. – Springer Nature, 2023. – 416 p.

2. Meleshin V.I. Upravlenie tranzistornymi preobrazovatelyami ehnergii [Control of transistor energy converters]. Moscow, Tekhnosfera publ. 2011. 576 p. (In Russian)

3. Safina R. M., Shkinderov M. S., Mubarakov R. R. Pomekhoustojchivost' sistem kontrolya i upravleniya dostupom v zdaniya pri vozdejstvii elektromagnitnyh pomekh po seti elektropitaniya [Noise immunity of control and management systems for access to buildings under the influence of electromagnetic interference through the power supply network] //Zhurnal radioehlektroniki. – 2021. – ¹ 6. (In Russian)

4. SHkinderov M. S., Nuriev M. G., Gizatullin Z. M. Skvoznoe prognozirovanie pomekhoustojchivosti sistem kontrolya i upravleniya pri vneshnih elektromagnitnyh vozdejstviyah [End-to-end prediction of noise immunity of control and management systems under external electromagnetic influences] //Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. – 2016. – ¹ 2(30). – P. 26-37. (In Russian)

5. Zagorodskih E. V. Ob istochnikah konduktivnoj pomekhoemissii pri proektirovanii mostovogo invertora napryazheniya [On sources of conductive interference emission in the design of a bridge voltage inverter] //Tekhnologii elektromagnitnoj sovmestimosti. – 2016. – ¹ 1. – P. 41-48. (In Russian)

6. Gizatullin Z.M., Gizatullin R.M., Mubarakov R.R. Metodika i sredstva dlya issledovaniya konduktivnyh pomekh ot preobrazovatelej elektroenergii v usloviyah ekspluatacii [Technique and tools for investigation of conductive interference from electricity converters under operating conditions] //ZHurnal radioelektroniki. – 2023. – ¹ 5. (In Russian)

7. Gizatullin Z.M., SHlejmovich M.P. Metodika issledovaniya konduktivnyh pomekh ot energeticheskih ustrojstv samoleta na etape ego modernizacii [Technique for research of conducted interferences from aircraft power devices at the stage of modernization] //Izvestiya vysshih uchebnyh zavedenij. Aviacionnaya tekhnika. – 2023. – ¹ 1. – P. 142-147. (In Russian)

8. Gazizov T. R. and etc. Puti resheniya aktual'nyh problem proektirovaniya radioelektronnyh sredstv s uchetom elektromagnitnoj sovmestimosti [Ways of solving actual problems of designing radio-electronic facilities with regard to electromagnetic compatibility] //Tekhnika radiosvyazi. – 2014. – ¹ 2(22). – P. 11-22. (In Russian)

9. Kuksenko S. P. and etc. Novye vozmozhnosti sistemy modelirovaniya elektromagnitnoj sovmestimosti TALGAT [New capabilities of the TALGAT electromagnetic compatibility modeling system] //Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki. – 2015. – ¹ 2(36). – P. 45-50. (In Russian)

10. Nuriev M. G., Gizatullin Z. M., Gizatullin R. M. Fizicheskoe modelirovanie elektromagnitnyh pomekh v bespilotnom letatel'nom apparate pri vozdejstvii vysokovol'tnoj linii elektroperedachi [Physical modeling of electromagnetic interference in an unmanned aerial vehicle when exposed to a high-voltage power line] //Izvestiya vysshih uchebnyh zavedenij. Aviacionnaya tekhnika. – 2017. – ¹ 2. – P. 119-124. (In Russian)

11. Shalagin S. V. Raspredelyonnoe vychislenie bystrogo preobrazovaniya Fur'e v arhitekture FPGA [Distributed calculation of fast Fourier transform in FPGA architecture] // Vestnik Tekhnologicheskogo universiteta. – 2019. – T. 22. – ¹ 2. – P. 155-158. (In Russian)

12. Gizatullin Z. M. Skvoznoe prognozirovanie pomekhoustojchivosti elektronno-vychislitel'nyh sredstv vnutri zdanij pri vneshnih elektromagnitnyh vozdejstviyah [End-to-end forecasting of noise immunity of electronic computing equipment inside buildings under external electromagnetic influences] //Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva. – 2011. – ¹ 2. – P. 123-128. (In Russian)

13. De Marchi L., Mitchell L. Hands-On Neural Networks: Learn how to build and train your first neural network model using Python. – Packt Publishing Ltd, 2019.

14. Andreyanov N. V. and etc. Analiz stenda bortovoj sistemy dlya metodov obnaruzheniya osnovannyh na glubokih nejronnyh setyah [Analysis of an on-board system test bed for detection methods based on deep neural networks] //Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2022. – ¹ 5. – P. 13-16. (In Russian)

15. Gizatullin Z. M. and etc. Issledovanie algoritma analiza izobrazhenij raduzhnoj obolochki glaza na osnove svertochnoj nejronnoj seti [Study of an algorithm for analyzing iris images based on a convolutional neural network] // Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2023. – ¹ 6. – P.55-57. (In Russian)

16. Katasev A. S. and etc. Svertochnaya nejrosetevaya model' raspoznavaniya rukopisnyh matematicheskih vyrazhenij [Convolutional neural network model for recognizing handwritten mathematical expressions] //Vestnik Tekhnologicheskogo universiteta. – 2024. – ¹ 6. – P. 123-127. (In Russian)

17. Luo M., Huang K. M. Prediction of the electromagnetic field in metallic enclosures using artificial neural networks //Progress In Electromagnetics Research. – 2011. – Ò. 116. – P. 171-184.

18. Gizatullin Z. M., Gizatullin R. M., Mubarakov R. R. Modelirovanie pomekh v elektronnom ustrojstve pri vozdejstvii impul'snogo magnitnogo polya s ispol'zovaniem iskusstvennoj nejronnoj seti [Modeling interference in an electronic device under the influence of a pulsed magnetic field using an artificial neural network] //Zhurnal radioelektroniki. – 2024. – ¹ 5. (In Russian)

19. Gizatullin Z. M., Mubarakov R. R. Prognozirovanie pomekh elektrostaticheskogo razryada v elektronnom ustrojstve s ispol'zovaniem iskusstvennoj nejronnoj seti [Prediction of electrostatic discharge interference in an electronic device using an artificial neural network] //Zhurnal radioelektroniki. – 2024. – ¹ 8. (In Russian)

20. Evdokimova T. S., Andreyanov N. V., Fatkullina L. F. Metody rasshireniya naborov dannyh na osnove obucheniya s podkrepleniem [Methods for expanding data sets based on reinforcement learning] //Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2023. – ¹ 11. – P.59-62. (In Russian)

21. Khadse C. B., Chaudhari M. A., Borghate V. B. Electromagnetic compatibility estimator using scaled conjugate gradient backpropagation based artificial neural network //IEEE Transactions on Industrial Informatics. – 2016. – Ò. 13. – ¹. 3. – P. 1036-1045.

22. Nguen V. T., Kirillov V. YU. Proektirovanie trass elektricheskih zhgutov bortovoj seti s uchetom elektromagnitnoj sovmestimosti [Design of electrical harness routes for on-board networks taking into account electromagnetic compatibility] //Tekhnologii elektromagnitnoj sovmestimosti. – 2020. – ¹ 2(73). – P. 29-35. (In Russian)

23. Gizatullin Z. M. and etc. Povyshenie ustojchivosti detektora konturov Kenni k vozdejstviyu pomekh [Increasing the stability of the Canny contour detector to interference] //Nauchno-tekhnicheskij vestnik Povolzh'ya. Uchrediteli: OOO «Rashin Sajns». – 2023. – ¹ 7. – P. 25-28. (In Russian)

24. Gibadullin R.F., Vershinin I.S., Glebov E.E. Razrabotka prilozheniya dlya associativnoj zashchity fajlov [Development of an application for associative file protection] //Inzhenernyj vestnik Dona. – 2023. – ¹ 6. – P.118-142. (In Russian)

25. SHaripov R. R., YUsupov B. Z. Issledovanie elektricheskih parametrov porogovyh izveshchatelej [Study of electrical parameters of threshold detectors] //Programmnye sistemy i vychislitel'nye metody. – 2023. – ¹ 3. – P. 29-47. (In Russian)

26. Gibadullin R. F., Vershinin I. S. Associativnaya zashchita chislovyh svedenij v tekstovyh dokumentah s primeneniem biblioteki Parallel Framework platformy .NET [Associative protection of numeric information in text documents using the Parallel Framework library of the .NET platform] //Computational Nanotechnology. – 2023. – ¹ 3. – P.121-129. (In Russian)

For citation:

Gizatullin Z.M., Mubarakov R.R. Prediction of conductive interference from electric power converter using artificial neural network // Journal of Radio Electronics. – 2025. – ¹ 4. https://doi.org/10.30898/1684-1719.2025.4.10 (In Russian)