Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.4.6

 

 

 

Difference-angle-measuring method and models
of coordinate measurement of a radar station
with a scanning radiation pattern

 

V.V. Sevidov

 

Military Orders of Zhukov and Lenin Red Banner Academy of Communications
named after Marshal of the Soviet Union S.M. Budyonny
194064, Russia, St. Petersburg, Tikhoretsky pr. 3

 

The paper was received January 12, 2025.

 

Abstract. The avalanche-like increase in radio-electronic means and systems for various purposes stimulates the development of radio-electronic monitoring. The most important task of radio-electronic monitoring is to estimate the coordinates of radio emission sources using positional methods of coordinate measurement. There is a class of radio emission sources – radar stations with a scanning radiation pattern, to which it is impossible to apply the existing positional methods of coordinate measurement using spatially distributed measuring devices. The article presents the developed difference-angle measurement method of coordinate measurement of a radar station with a scanning radiation pattern. The developed method is based on recording radio emissions by a radar station at the moments of time of the direction of the maximum of the radiation pattern to each of the measuring devices during scanning. Such moments of time are recorded, and their differences are coordinate-informative parameters. Based on the coordinate-informative parameters, the position parameters – azimuth differences – are calculated. Then, the position lines corresponding to the position parameters are constructed. The coordinates of the intersection of the position lines are selected as the desired coordinates of the radar station. A method for eliminating the ambiguity of the radar station coordinates estimate caused by the intersection of position lines at several points is proposed. The main stages of the developed method and their content are disclosed. Particular attention is paid to constructing position lines on the surface of the reference ellipsoid of the Earth. Interpolation and approximation methods are used. An example of constructing position lines for the selected option for placing spacecraft is presented. Analytical expressions are derived that together form a mathematical model of the developed difference-angle measurement method of coordinate measurement. A system of quadratic equations is compiled, in which the coordinates of the radar station with a scanning radiation pattern act as variables. An iterative algorithm for solving a system of quadratic equations by the Newton-Raphson method with expansion of functions in Taylor series accurate to first derivatives is presented. To assess the accuracy of the developed method, a simulation model is developed in the MathLab programming environment. The results of the simulation model are presented in the form of isolines of the radii of the standard deviation of the estimate of the coordinates of the radar station with a scanning radiation pattern for the selected conditions. The identified advantages and disadvantages of the developed difference-angle-measuring method of coordinate measurement of a radar station with a scanning directional diagram are presented. The direction of further research is indicated.

Key words: radio electronic monitoring, coordinate estimation, radio emission source, coordinate-information parameter, position parameter, position line, approximation, interpolation, Newton-Raphson method, Taylor series, spacecraft.

Corresponding author: Sevidov Vladimir Vitalievich, v-v-sevidov@mail.ru

References

1. Lutsenko S.A. Model' funktsionirovaniya sputnikovoi sistemy radiosvyazi s fazomanipulirovannymi shirokopolosnymi signalami v usloviyakh postanovki prednamerennykh pomekh //Zhurnal radioelektroniki. – 2018. – ¹. 9. – S. 2-2.

2. Agievich S.N., Lutsenko S.A., Tikhonov S.S. Generalized mathematical model of a radio signal in various bases. // Journal of Radio Electronics. – 2024. – ¹. 7. https://doi.org/10.30898/1684-1719.2024.7.5 (In Russian).

3. Fokin G., Bachevsky S., Sevidov V. System level performance evaluation of location aware beamforming in 5g ultra-dense networks //2020 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech). – IEEE, 2020. – S. 94-97. https://doi.org/10.1109/EExPolytech50912.2020.9243970

4. Fokin G., Sevidov V. Model for 5G UDN Positioning System Topology Search Using Dilution of Precision Criterion //2021 International Conference on Electrical Engineering and Photonics (EExPolytech). – IEEE, 2021. – S. 32-36. https://doi.org/10.1109/EExPolytech53083.2021.9614751

5. Kistanov P.A. i dr. Sravnitel'naya effektivnost' dvukh raznostno-dal'nomernykh metodov sputnikovoi geolokatsii //Radiotekhnika. – 2020. – T. 84. – ¹. 12. – S. 17-30. https://doi.org/10.18127/j00338486-202012(24)-02 (In Russian).

6. Patent ¹ 2832139 C1 Rossiiskaya Federatsiya, MPK G01S 5/02. Sposob vysokotochnogo opredeleniya mestopolozheniya istochnika radioizlucheniya: ¹ 2023133028: zayavl. 08.12.2023: opubl. 19.12.2024 / V.A. Balybin, V.G. Radzievskii, P.P. Krutskikh, M.D. Guliev; zayavitel' VUNTS VVS «VVA». – EDN IRJTBJ.

7. Laboratornyi maket polyarizatsionno-adaptivnogo radiopelengatora istochnikov radioizluchenii diapazona ochen' vysokikh chastot / S.V. Bogdanovskii, A.N. Simonov, S.F. Teslevich, I.V. Demichev // Elektromagnitnye volny i elektronnye sistemy. – 2022. – T. 27, ¹ 3. – S. 10-15. – EDN RTVUAS.

8. Prostranstvenno-polyarizatsionnaya obrabotka radiosignalov pri pelengovanii istochnikov radioizlucheniya s bespilotnogo letatel'nogo apparata / Z.F. Shaidulin, S.F. Teslevich, S.V. Bogdanovskii, A.N. Simonov // Elektromagnitnye volny i elektronnye sistemy. – 2022. – T. 27, ¹ 3. – S. 4-9. – EDN LTWLCF.

9. Polyanskii I.S. i dr. Algoritm fil'tratsii koordinat nazemnogo istochnika nesanktsionirovannogo radioizlucheniya v sisteme sputnikovoi svyazi s pryamoi retranslyatsiei //Fizika volnovykh protsessov i radiotekhnicheskie sistemy. – 2021. – T. 24. – ¹. 1. – S. 67-77. https://doi.org/10.18469/1810-3189.2021.24.1.67-77 (In Russian).

10. Otsenka chuvstvitel'nosti priema signalov, ispol'zuemykh v tekhnologii LoRa / S. V. Dvornikov, A.R. Bestugin, S.S. Dvornikov, I.A. Kirshina // Radiotekhnika. – 2024. – T. 88, ¹ 8. – S. 18-23. – DOI 10.18127/j00338486-202408-02. – EDN EMKMPX. https://doi.org/10.18127/j00338486-202408-02 (In Russian).

11. Sevidov V.V., Chemarov A.O. Opredelenie koordinat sputnikov-retranslyatorov v raznostno-dal'nomernoi sisteme geolokatsii //Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika. – 2015. – ¹. 3. – S. 41-47.

12. Kovalev, F.N. Tochnost' mestoopredeleniya tseli v bistaticheskoi radiolokatsionnoi sisteme / F. N. Kovalev // Uspekhi sovremennoi radioelektroniki. – 2022. – T. 76, ¹ 4. – S. 4–7.

13. Optimal Placements for Minimum GDOP With Consideration on the Elevations of Access Nodes / Ya. Ding, D. Shen, Kh. Pham, G. Chen // IEEE Transactions on Instrumentation and Measurement. – 2025. – Vol. 74. – P. 1-10. – DOI 10.1109/tim.2024.3497055. – EDN MNBUVI.

14. Volkov R.V., Sayapin V.N., Sevidov V.V. Model' izmereniya vremennoi zaderzhki i chastotnogo sdviga radiosignala, prinyatogo ot sputnika-retranslyatora pri opredelenii mestopolozheniya zemnoi stantsii //T-Comm-Telekommunikatsii i Transport. – 2016. – T. 10. – ¹. 9. – S. 14-18.

15. Bulychev YU. G. i dr. Energeticheskii metod kvazioptimal'noi odnopozitsionnoi lokatsii i navigatsii dvizhushchegosya istochnika izlucheniya s uchetom apriornoi informatsii //Zhurnal radioelektroniki. – 2018. – ¹. 12. https://doi.org/10.30898/1684-1719.2018.12.15 (In Russian).

16. Malyshev S.R. Metodika opredeleniya mestopolozheniya istochnikov radioizluchenii nazemnymi i vozdushnymi sredstvami radiomonitoringa / S.R. Malyshev, M.V. Kulikov // Uspekhi sovremennoi radioelektroniki. – 2015. – ¹ 7. – S. 50-55. – EDN UGMBOB.

17. Antipov, N.S. Pokazatel' effektivnosti funktsionirovaniya passivnoi prostranstvenno-raspredelennoi razvedyvatel'no-informatsionnoi podsistemy smeshannoi gruppirovki protivovozdushnoi oborony / N.S. Antipov, S.V. Bogdanovskii, A.V. Timoshenko // Vestnik vozdushno-kosmicheskoi oborony. – 2023. – ¹ 2(38). – S. 6-12. – EDN GSTSBZ.

18. Yachmenev, A.V. Otsenka effektivnosti gibridnogo metoda passivnoi lokatsii / A.V. Yachmenev // Voprosy radioelektroniki. Seriya: Tekhnika televideniya. – 2022. – ¹ 2. – S. 79-83. – EDN HZOEZD.

19. Fokin G. Bearing measurement with beam refinement for positioning in 5G networks //Proceedings of the 5th International Conference on Future Networks and Distributed Systems. – 2021. – S. 537-545. https://doi.org/10.1145/3508072.3508183

20. Fokin G.A., Lazarev V.O. Otsenka tochnosti pozitsionirovaniya istochnika radioizlucheniya raznostno-dal'nomernym i uglomernym metodami. Chast' 3. 3D-modelirovanie //Trudy uchebnykh zavedenii svyazi. – 2020. – T. 6. – ¹. 2. – S. 87-102. https://doi.org/10.31854/1813-324X-2020-6-2-87-102 (In Russian).

For citation:

Sevidov V.V. Difference-angle-measuring method and models of coordinate measurement of a radar station with a scanning radiation pattern. // Journal of Radio Electronics. – 2025. – ¹. 4. https://doi.org/10.30898/1684-1719.2025.4.6 (In Russian)