Journal of Radio Electronics. eISSN 1684-1719. 2025. №4
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.4.7
Simulation OF THERMAL CHARACTERISTICS
OF HIGH-TEMPERATURE MONOLITHIC INTEGRATED CIRCUITS
WITH AN INHOMOGENEOUS DISTRIBUTION
OF HEAT SOURCES IN A CRYSTAL
I.V. Frolov 1, A.M. Hodakov 1, V.A. Sergeev 1,2, D.V. Kleimenkin 3
1 Ulyanovsk Branch of the Kotelnikov Institute
of Radioengineering and Electronics of RAS
432011, Russia, Ulyanovsk, Goncharova St., 48/22 Ulyanovsk State Technical University
432026, Russia, Ulyanovsk, Severny Venets st., 323Don State Technical University
344000, Russia, Rostov-on-Don, Gagarin Square, 1
The paper was received January 13, 2025.
Abstract. A 3D thermal model of a monolithic integrated circuit (MIC) of a microwave power amplifier has been developed. This circuit is the basis for modern submodules of output power amplifiers of receiving and transmitting modules of active phased antenna arrays. The simulated MIC consists of three stages of power amplifiers, the total thermal power dissipated by the crystal is 6 W and is distributed between the amplifier stages of the MIC in the proportion 1:2:12. The active elements (transistors) of the MIC – the main discrete heat sources – are distributed non-uniformly across the MIC crystal. Computer modeling in the Comsol Multiphysics software environment has shown that with an increase in the ambient temperature from 300 to 600 K, the maximum overheating temperature of a gallium arsenide (GaAs) MIC crystal increases from 38 to 84 K, and that of a gallium nitride (GaN) MIC crystal – from 18 to 47 K. Based on the electrothermal analogy principle, according to which the sources of the released thermal power are represented by electric current sources, and the thermal resistances of the object’s structural elements are represented by electrical resistances, a thermal equivalent circuit of the MIC has been developed. Satisfactory agreement (within 10%) between the results of determining the maximum overheating temperature of both GaAs and GaN MIC crystals by computer 3D modeling and by calculation using the thermal equivalent circuit has been shown. The developed models can be used in designing high-temperature integrated circuits, including those with a non-uniform arrangement of heat sources in the crystal.
Key words: monolithic integrated circuit, 3D thermal model, gallium nitride, gallium arsenide, thermal equivalent circuit, crystal overheating temperature.
Financing: The research has been carried out at the expense of the Grant of the Russian Science Foundation No. 23-79-10069, https://rscf.ru/en/project/23-79-10069/.
Corresponding author: Frolov Ilya Vladimirovich, ilya-frolov88@mail.ru
References
1. Sharma R.C. et al. Gallium arsenide and gallium nitride semiconductors for power and optoelectronics devices applications //Journal of Physics: Conference Series. – IOP Publishing, 2023. – V. 2426. – №. 1. – С. 012008. https://doi.org/10.1088/1742-6596/2426/1/012008
2. Hassan A. et al. Circuit techniques in GaN technology for high-temperature environments //Electronics. – 2021. – V. 11. – №. 1. – P. 42. https://doi.org/10.3390/electronics11010042
3. Беспалов В., Егоркин В., Журавлев М. Нитрид галлия: новый подход для эффективного преобразования электроэнергии [Gallium Nitride: A New Approach for Efficient Energy Conversion] // Электроника: Наука, Техноло-гия, Бизнес. – 2022. – № 3. – С. 150–157. https://doi.org/10.22184/1992-4178.2022.214.3.150.157
4. Коколов А.А., Черкашин М.В. Построение и характеристики СВЧ-монолитных усилителей мощности на основе полупроводниковых материалов GaAs и GaN [Construction and characteristics of microwave monolithic power amplifiers based on semiconductor materials GaAs and GaN] // Доклады Томского государственного университета систем управ-ления и радиоэлектроники. – 2011. – №. 2-2 (24). – С. 17-23.
5. Боднарь Д. Металлические и композитные теплопроводящие материалы для мощных полупроводниковых корпусов [Metallic and composite thermal conductivity materials for high-power semiconductor packages] // Компоненты и технологии. – 2014. – №. 12 (161). – С. 155-160.
6. Kadum M.E., Imran A.A., Aljabair S. Heat transfer in electronic systems printed circuit board: A review // Engineering and Technology Journal. – 2022. – V. 40. – №. 01. – P. 99-108. http://doi.org/10.30684/etj.v40i1.2113
7. Uvarov B.M., Zin’kovskii Y.F. Electrothermal models of structural elements of radioelectronic device //Radioelectronics and Communications Systems. – 2015. – V. 58. – №. 11. – P. 506-514. https://doi.org/10.3103/S0735272715110047
8. Сергеев В.А., Тарасов Р.Г., Ходаков А.М. Расчет и измерение тепловых параметров монолитных интегральных схем СВЧ-усилителей в составе выходных усилителей мощности X-диапазона [Calculation and measurement of thermal parameters of monolithic integrated circuits of microwave amplifiers in the composition of X-band output power amplifiers] // Журнал радиоэлектроники. – 2019. – №. 9. – С. 9-9. https://doi.org/10.30898/1684-1719.2019.9.1
9. Ходаков А.М. и др. Термодеформационная модель субмодуля выходного усилителя мощности Х-диапазона [Thermal deformation model of the submodule of the X-band output power amplifier] // Радиоэлектроника. Наносистемы. Информационные технологии. – 2021. – Т. 13. – №. 1. – С. 13-18. https://doi.org/10.17725/rensit.2021.13.013
10. Металлокерамические и керамические корпуса для полупроводниковых приборов и монолитных интегральных схем СВЧ [Metal-ceramic and ceramic housings for semiconductor devices and monolithic integrated microwave circuits] [Электронный ресурс]. Режим доступа: https://m-projects.ru/news/375/. Дата обращения 23.12.2024.
11. Карслоу Г., Егер Д. Теплопроводность твердых тел. – М.: Наука, 1964. – 487 с.
12. NSM Archive – Physical Properties of Semiconductors [электронный ресурс]. Режим доступа: http://www.ioffe.rssi.ru/SVA/NSM/Semicond\index.html. Дата обращения 23.12.2024.
13. Xu Y., Hopkins D.C. Misconception of thermal spreading angle and misapplication to IGBT power modules // 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. – IEEE, 2014. – P. 545-551. https://doi.org/10.1109/APEC.2014.6803362
14. Захаров, А.Л.; Асвадурова, Е.И. Расчет тепловых параметров полупроводниковых приборов: метод эквивалентов. – М.: Радио и связь, 1983.
For citation:
Frolov I.V., Hodakov A.M., Sergeev V.A., Kleimenkin D.V. Simulation of thermal characteristics of high-temperature monolithic integrated circuits with an inhomogeneous distribution of heat sources in a crystal. // Journal of Radio Electronics. – 2025. – №. 4. https://doi.org/10.30898/1684-1719.2025.4.7 (In Russian)