"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 8, 2016

contents             full texthtml,   pdf   


L. E. Nazarov 1, A. S. Zudilin 2

1 Kotel’nikov Institute of Radio-Engineering and Electronics of RAS, Fryazino

2 JSC Academician M.F.Reshetnev “Information Satellite Systems”, Zheleznogorsk


The paper is received on August 4, 2016


Abstract. The orthogonal frequency division multiplexing signals (OFDM) suffer from high sidelobes level. The sidelobes of the OFDM-modulated tones cause the out-of-band power which can induce large interference to the incumbent communication systems. The modulation and decoding algorithms for OFDM signals with sidelobe suppression or out-of-band emission reduction are presented in the article. The proposed method is Minimum Shift Keying in each subcarriers (OFDM-MSK). The developed algorithm for signal modulation is described by means of waveform trellis associated with the trellis of information bit sequence. It is base for iterative decoding of effective block and convolutional codes (turbo-codes, Low-Density Parity Check Codes). The base of modulation and decoding algorithms for OFDM-MSK is Discrete Fourier Transform. The simulation results for developed algorithms are presented. The simulation results show high power spectral efficiency of OFDM-MSK - the largest sidelobe of OFDM-MSK is around 12.7 dB less than OFDM.

Key words: signals, side-lobe spectrum, minimum shift keying, decoding, OFDM-MSK, error performance.


1. Volkov L.N., Nemirovsky M.S., Shinakov U.S. Sistemy sifrovoi radiosviasy. Basovye metody I harakteristiki. Digital communication systems. [Based methods and characteristics]. Moscow, Eko-Trends. 2005. 392 p. (In Russian)

2. Vishnevskii V.M., Lahov A.I., Portnoi S.L., Shahnovich I.V. Shirokopolosnie seti peredachi. [Broadband communication]. Moscow, Techno-Sphere. 2005. 592 p. (In Russian)

3. Liu H., Li G. OFDM-Based Broadband Wireless Networks. Hoboken: John Wiley & Sons. 2005. 251 p.

4. Akhmed N., Rao K.R. Ortogonalnye preobrazovaniya pri tsifrovoy obrabotke signalov. [Orthogonal transformations in digital signal processing]. Moscow: Svyaz. Publ. 1980. 248 p. (In Russian)

5. Nazarov L.E., Zudilin A.S. Techniques for narrow band noise reduction for OFDM signals. // Izvestija vysshih uchebnyh zavedenij.Elektronika - Russian microelectronics, 2013, ¹6 (104), p. 45-51.

6. Kalinin V.I., Radchenko D.E., Cherepenin V.A. The error-performances of digital channels based on continue noise signals under spectral modulation.// Radiotechnika-Radioengineering, 2015, ¹8, pp. 84-94. (In Russian)

7. Shinakov Y.S. Interference power arisi in applications with nonlinearcharacteristic of the amplitude and amplitude-phase shift.// Proektirovanie I technologia elektronih sredstv - Design and technology of electronic means, 2012, ¹3, p. 19-24. (In Russian)

8. Shinakov Y.S. Pick-factor of OFDM signals and nonlinear distortion in the wireless access radioequipment. // Tsifrovaya obrabotka signalov – digital signal processing, 2012, ¹4, p.58-65. (In Russian)

9. Shinakov Y.S.Power spectral density of interference caused by nonlinear distortions in devices with amplitude-phase conversion. // Journal of Communications Technology and Electronics, 2013, Vol. 58, No.10, pp. 1024-1034. DOI: 10.1134/S106422691310001X

10. Shinakov Y.S.Two methods of output signal power calculation for devices with amplitude-phase conversion. // Radiotechnika-Radioengineering, 2016, ¹2, pp. 66-71. (In Russian)

11. Klokov S.S., Shinakov Y.S. The methods of decreasing pick-factor in systems with OFDM technolodgy. // Proceedings of conference “Technolodgy of information society”.  Ìoscow, 2016. pp. 131-132. (In Russian)

12. Nazarov L.E., Zudilin A.S. Estimating the power and efficiency of intermodulation interferences under the OFDM-signal-envelope limitation.// Journal of Communications Technology and Electronics, 2015, Vol. 60, No.5, pp. 489-495. DOI: 10.1134/S1064226915050071

13. Nazarov L.E., Zudilin A.S. Techniques for estimating the power of the intermodulation interferences of orthogonal frequency-division multiplexing signals.// Journal of Communications Technology and Electronics, 2014, Vol. 59, No.2, pp. 158-163. DOI: 10.1134/S1064226914020041

14. Nazarov L.E., Zudilin A.C. Evaluation of intermodulation noise power for OFDM signals with envelope limit clipping.// Zhurnal radioelectroniki - Journal of Radio Electronics, 2013, No6 (In Russian). Available http://jre.cplire.ru/jre/jun13/1/text.pdf.

15.Makarov S.B., Tsikin I.A. Peredacha diskretnix ssobchenii po kanalam s ogranichennoi golosoi propuskania [Communication under channels with constrained frequency band]. Moscow, Radio and communication, 1988. 392 p. (In Russian)

16. Brandes S., Cosovic I., Schnell M. Reduction of Out-of-Band Radiation in OFDM Systems by Insertion of Cancellation Carriers.// IEEE Communications Letters. 2006. V. 10. N 6. P. 420–422. DOI: 10.1109/LCOMM.2006.1638602

17. Muller-Weinfurtner S.H. Optimum Nyquist windowing in OFDM receivers.// IEEE Transactions on Communications. 2001. V.49. N3. P. 417-420. DOI:10.1109/26.911448

18. Tan P., Beaulieu N.C. Analysis of the effects of Nyquist pulse-shaping on the performance of OFDM systems with carrier frequency offset. // European Transactions on Telecommunications. 2009. N.20. P.9-22. DOI: 10.1002/ett.1316

19. Massey J.L. A generalization of Binary Minimum Shift Keying and Staggered Quadriphase Shift Keying modulation. // The Deep Space Network DSN Progress Report 42-52. Jet Propulsion Laboratory. Pasadena. May and June 1979. P. 26-40.

20. Pasupathy S. Minimum Shift Keying: a spectrally efficient modulation. // IEEE Communications Magazine. 1979. V.17. N4. P.14-22. DOI: 10.1109/MCOM.1979.1089999

21. Mahmoodi S., Saeedi H., Omidi M.J. OFDM-MSK: A Method for Sidelobe Suppression in OFDM Systems. // 20-th Iranian Conference on Electrical Engineering. Tehran. 2012. 15-17 May. P.1474-1477. DOI: 10.1109/IranianCEE.2012.6292591

22. Yang R.H-H., Chern S-J.,Tseng C-C., Zhan Z-H. OFDM-MSK for Wireless Communications. // Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems. 2005. December 13-16. Hong-Kong. P.269-272. DOI: 10.1109/ISPACS.2005.1595398

23. Johnson S.J. Iterative Error Correction: Turbî, Low-Density Parity-Check and Repeat-Accumulate Codes. Cambridge. University Press. UK. 2010. 356 p.