"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 8, 2018

contents of issue      DOI  10.30898/1684-1719.2018.8.16     full text in English (pdf)  

UDC 621.372, 532.59

ON THE BEST METHODS FOR TIME DOMAIN ANALYSIS OF RF CIRCUITS

 

V. N. Biryukov

Southern Federal University, Bol’shaya Sadovaya, 105/42, Rostov-on-Don 344006, Russia 

 

The paper is received on August 13, 2018 

 

Abstract. Currently employed time-domain simulation methods, which are based on trapezoidal rule (TR), or backward differentiation formulas (BDF), reveal to be both poorly accurate and inefficient when employed to simulate oscillating circuits. Only L-stable methods can solve stiff systems of ordinary differential equations (SODE) of most practical circuits and only P-stable methods can solve SODE of oscillation circuits. A trapezoidal rule is P-stable, but isn’t L-stable. BDFs are L-stable, but do not have P-stability. This paper presents a one-step multi-stage backward differentiation formula (TR-BDF4) of a second-order, as a generalization of the TR-BDF composite scheme. This scheme is equivalent to singly diagonally implicit Runge-Kutta (SDIRK) methods of special type, and regarded as the one-step analogs of the multi-step methods, the backward differentiation formulas (BDFs). TR-BDF4' method is A(π/2)-stable, is not P-stable, but it has an interval of periodicity (0; 0.37). Unlike the conventional BDFs and TR-BDF the TR-BDF4 at small steps maintains the accuracy of the trapezoidal formula at the imaginary axis.

It is further shown that the implicit difference schemes solvable by Gauss-Seidel iterations have some similar properties.

Keywords: oscillating circuits, nonlinear differential equations, error analysis.

References

1.       J. G. Fijnvandraat,  S. H. M. J. Houben, E. J. W. terMaten, J. M. F. Peters, “Time domain analog circuit simulation”, Journal of Computational and Applied Mathematics, Vol. 185, Issue 2, pp. 441–459, Jan. 2006.

2.       R. E. Bank et al., “Transient simulation of silicon devices and circuits”, IEEE Trans. CAD 4, pp. 436– 451, Apr. 1985.

3.       M. E. Hosea, L. F. Shampine, “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., Vol. 20, pp. 21–37 (1-2), 1996.

4.       V. N. Biryukov, “Synthesis of an implicit A-stable one-step second order schemes by the high order backward differentiation formulas”, Matem. Mod., Vol. 21, no.10, pp. 107110, Nov. 2009 (in Russian). Available at:  http://www.mathnet.ru/links/f436d71e9251a2f41b2ac26f77b5c744/mm2895.pdf

5.       De G. Micheli, A. Sangiovanni-Vincentelli, “Characterization of integration algorithms for the timing analysis of MOS VLSI circuits”, Circuit Theory and Applications, Vol. 10.– pp. 299-309. 1982.

6.       V. N. Biryukov, A. M. Pilipenko, “Numerical analysis of the wave propagation”, Matem. Mod., Vol. 17, No. 5, pp. 123128, May. 2005 (In Russian). Available at  http://www.mathnet.ru/links/3e0e8d708fd3c420e5f1702f6d7d0b67/
mm196.pdf

7.       W. Ying, C. S. Henriquez, D. J. Rosem, “Composite backward differentiation formula: an extension of the TR-BDF2 scheme”, Appl. Numer. Math., pp. 16–19, Febr. 2011.

8.       E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag, 1991. 482 p.

9.       W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing. Second Edition, Cambridge university press, 1997.

10.     L. R. Petzold, L. O. Jay, J. Yen, “Numerical solution of highly oscillatory ordinary differential equations”, Acta Numerica, pp. 437– 483, 1997.

11.     P. M. Gresho, D. F. Griffiths, and D. J. Silvester, “Adaptive time-stepping for incompressible flow, part I: Scalar advection-diffusion”, SIAM J. Sci. Comput., Vol. 30, pp. 2018–2054. 3008.

12.     J. A. Lee, Jaewook Nam, and M. Pasquali, “A new stabilization of adaptive step trapezoid rule based on finite difference interrupts”, SIAM J. Sci. Comput. Vol. 37, no. 2, pp. A725–A746, Feb. 2015.

13.     G. Söderlind, and L. Wang, “Evaluating numerical ODE/DAE methods, algorithms and software”, Journal of Computational and Applied Mathematics, Vol. 185, pp. 244–260, 2006.

14.     A. M. Pilipenko, V. N. Biryukov, “Investigation of modern numerical analysis methods of self-oscillatory circuits efficiency”, Zhurnal radioelektroniki - Journal of radio electronics, No. 8, Aug, 2013. Available at:  http://jre.cplire.ru/jre/aug13/9/text-engl.html

15.     P. Maffezzoni, L. Codecasa, D. D’Amore, “Time-domain simulation of nonlinear circuits through implicit Runge-Kutta methods,” IEEE Trans. Circuits and Syst., Vol. 54, no 2, pp. 391-400, Feb. 2007.

16.     S. Levantino et al, “Efficient Calculation of the Impulse Sensitivity Function in Oscillators”, IEEE Trans. Circuits and Syst.—II, Vol. 59, No. 10, pp. 628-632, Oct. 2012.

17.     V. N. Biryukov,  A. M. Polstyanoi, “Using the Seidel iteration for solving implicit schemes of ordinary differential equations for the programs of analysis of electronic circuits”, Radioelectronics and communications systems, Vol. 40, No. 11, pp. 4951, Nov. 1997.

18.     A. M. Pilipenko, V. N. Biryukov, “Development and testing of high accuracy hybrid methods for time-domain simulations of electronic circuits and systems”, in Proceedings of IEEE East-West Design & Test Symposium, Novi Sad, Serbia, Sep. 27 – Oct. 2, 2017, pp. 220-223.

For citation:

V. N. Biryukov. On the best methods for time domain analysis of RF circuits. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 8. Available at http://jre.cplire.ru/jre/aug18/16/text.pdf

DOI  10.30898/1684-1719.2018.8.16