Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 8
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.8.12

UDC 621.3.095.11

 

 Full-wave and impedance models of ultra wideband thin twist-metapolarizers for cloacking coverings

 

P. V. Blagovisnyy, A. I. Semenikhin

Southern Federal University, Institute of the Radio Engineering Systems and Control, Nekrasovskyy Lane, 44, Taganrog 347922, Russia

 

The paper is received on July 7, 2020, after correction - on August 19, 2020

 

Abstract. Modern low reflective non-absorptive coatings are based on the principles of the twist-effect, the interference cancellation and the diffuse scattering of electromagnetic waves. Such chess-like coatings consist of an anisotropic metasurface on a shielded dielectric substrate. They represent metapolarizers distributed over a coating. Advantages of these structures are: the applicability in different wavelength ranges (from microwave to terahertz and optics), the electromagnetic energy absorptionless and the absence of radiation in the infra-red range. However, the development of full-wave models of low observable anisotropic metasurfaces requires large computational resources and time consumption. In practice, therefore, simpler impedanced models of coded metapolarizers are used simultaneously. Two types of metapolarizers’ models, differed by metaparticles topology, are studied in this paper. The metasurface of the first MP consists of metaparticles in the form of "eights" (an original topology), the second one - of metaparticles in the form of symmetric split ring resonators (an improved know topology). The aim of the work is to investigate the full-wave and impedance models of more effective (compared with known ones) ultra wideband thin single-layer metapolarizers as applied to the creation of radio masking coded coatings. To construct impedance models of reciprocal metapolarizers, fields homogenization in the Floquet channel and the equivalent circuits method are used. The applicability criterion for impedanced dissipationless models of metapolarizers is the satisfaction of the Foster's theorem and the identity of the frequency characteristics of the reflection coefficients for the impedanced and full-wave MP models. Electrodynamics simulation is performed in HFSS. Designed full-wave and impedance models of the first and second metapolarizers provide a twist effect at the level of minus 17 dB and 15 dB in the frequency bands of around 67,1% and 70,9% respectively (under normal incidence). When increasing the wave incidence angle up to 20 degrees the twist-effect decreasing on 1-2 dB and the working frequency band narowing on 5-7% are observed. Applicability conclusion of using the proposed metapolarizers in the designs of cloaking coded covers is drawn based on the results obtained.

Key words: metapolarizer, anisotropic metasurface, equivalent circuits’ method, homogenization, twist-effect, metaparticle, metacovering.

References

1.     Chen J., Cheng Q., Zhao J. Reduction of radar cross section based on a metasurface. Prog. Electromagn. Res. 2014. No.146. 71–6. https://doi.org/10.2528/pier14022606

2.     Cui T.J., Qi M.Q., Wan X., Zhao J., Cheng Q. Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials.  Light: Science & Applications. 2014. Vol.3. No.10. 25 p. https://doi.org/0.1038/lsa.2014.99

3.     Gao L.H., Cheng Q., Yang J., et al. Broadband Diffusion of Terahertz Waves by Multi-bit Coding Metasurfaces. Light: Science & Applications. 2014. No.4. e324. https://doi.org/10.1038/lsa.2015.97

4. Modi A.Y., Balanis C.A., Birtcher C.R., Shaman H. Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors.  IEEE Transactions on Antennas and Propagation. Oct. 2017. Vol.65. No.10. P.5406–5417. https://doi.org/10.1109/tap.2017.2734069

5.     Semenikhin A.I., Semenikhina D.V., Yukhanov Yu.V. and Klimov A.V. RCS reduction using non-absorptive binary coatings with anisotropic impedance metasurface. Antenny – Antennas. 2019. No.1. P.65-72. https://doi.org/10.18127/j03209601-201901-09 (in Russian)

6.     Semenikhina D.V., Semenikhin A.I., Yukhanov Y.V. and Klimov A.V. Binary structures similar to checkerboard, with anisotropic impedance metasurface for RCS reduction.  2016 International Conference on Electromagnetics in Advanced Applications (ICEAA). Cairns, Australia. 2016. P.307-310. https://doi.org/10.1109/iceaa.2016.7731382

7.     Petrov B.M., Semenikhin A.I., Controlled Impedance Coverings and Structures. Zarubezhnaya radioelektronika – Foreign Radio Electronics. 1994. Vol. 6. P.9-16. (In Russian)

8.     Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V., Blagovisnyy P.V. Digital 2-bit Metasurfaces with Coding Orientation of Anisotropy for RCS Reduction.  2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). Verona, Italy. 2017. P.360-363. https://doi.org/10.1109/iceaa.2017.8065250

9.     Mohammad A., Samadi F., Sebak A.-R., Denidni T.A. Superbroadband Diffuse Wave Scattering Based on Coding Metasurfaces. Polarization conversion metasurfaces. IEEE Antennas & Propagation Magazine. Apr.2019. P.40-52. https://doi.org/10.1109/map.2019.2896218

10.  Kong C., Li Z., Wu Z. Ultra-wideband Polarization Conversion Metasurface.  11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2016. P.210-212. https://doi.org/10.1109/ISAPE.2016.7833918

11.  Semenikhina D.V., Klimov A.V., Semenikhin A.I., Yukhanov Y.V. Metamaterial-Inspired Model of Broadband Twist-Polarizer. IEEÅ Explore 2015 57th International Symposium ELMAR (ELMAR). 2015. P.149-152. https://doi.org/10.1109/ELMAR.2015.7334518

Klimov A.V., Semenikhin A.I. Models of ultra-wideband two-layer reflective polarizers. Telekommunikatsii – Telecommunications. 2016. No.5. P.8-13. (In Russian)

13.  Zhang L., Zhou P., Lu H., Chen H., Xie J., Deng L. Ultra-Thin Reflective Metamaterial Polarization Rotator Based on Multiple Plasmon Resonances. IEEE Antennas and Wireless Propagation Letters. 2015. Vol.14. P.1157-1160. https://doi.org/10.1109/lawp.2015.2393376

14.  Zhang L., Luo J., Zhou P., Chen H., Xie J., Deng L. Dual-band Polarization Converter Based on Reflective Metamaterial at Microwave Frequencies. 2016 Progress in Electromagnetic Research Symposium (PIERS). 2016. 4 p. https://doi.org/10.1109/piers.2016.7735417

15.  Zhou Y., Cao X., Gao J., Li S. A C/X Dual-band Wide-angle Reflective Polarization Rotation Metasurface. Radioengineering. 2017. Vol.26. No.3. P.699-704. https://doi.org/10.13164/re.2017.0699

16.  Yang D., Lin H., Huang X. Dual Broadband Metamaterial Polarization Converter in Microwave Regime. Progress In Electromagnetics Research Letters. 2016. Vol.61. P.71-76. https://doi.org/10.2528/pierl16033004

17.  Li M., Lan F., Yang Z., Zhang Y., Shi Z., Shi M., Su H., Luo F. Broadband and Highly Efficient sub-THz Reflective Polarization Converter based on Z-shaped Metasurface. 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016). 2016. P.427-432. https://doi.org/10.2991/icmmbe-16.2016.80

18.  Wei Z., Huang J., Li J., Xu G., Ju Z. Dual-broadband and near-perfect polarization converter based on anisotropic metasurface. Optical and Quantum Electronics. 2017. Vol.49. No.9. 12 p. https://doi.org/10.1007/s11082-017-1121-5

19.  Mao C., Yang Y., He X., Zheng J., Zhou C. Broadband reflective multi-polarization converter based on single layer double-L-shaped metasurface. Applied Physics A. 2017. Vol.123. No.12. P.767-762. https://doi.org/10.1007/s00339-017-1322-6

20.  Zhang Z., Cao X., Gao J., Li S. Broadband Metamaterial Reflectors for Polarization Manipulation based on Cross/Ring Resonators. Radioengineering. 2016. Vol.25. No.3. P.436-441. . https://doi.org/10.13164/re.2016.0436

21.  Shi H., Zhang A., Wang J., Xu Z. Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity. Optics express. 2014. Vol.22. No.17. 9 p. https://doi.org/10.1364/oe.22.020973

22.  Zhang L., Zhou P., Chen H., Lu H., Xie J., Deng L. Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies. Applied Physics B. 2015. Vol.120. No.4. P.617-622. https://doi.org/0.1007/s00340-015-6173-2

23.  Lin B.-Q., Guo J.-X., Chu P., Huo W.-J., Xing Z., Huang B.-G., Wu L. Multiple-Band Linear-Polarization Conversion and Circular Polarization in Reflection Mode Using a Symmetric Anisotropic Metasurface. Physical Review Applied. 2018. Vol.9. No.2. 10 p. https://doi.org/10.1103/physrevapplied.9.024038

24.  Chen H., Wang J., Ma H., Qu S., Zhang J.-Q., Xu Z., Zhang A. Broadband perfect polarization conversion metasurfaces. Chinese Physics B. 2015. Vol.24. No.1. 5 p. https://doi.org/10.1088/1674-1056/24/1/014201

25.  Chen H., Wang J., Ma H., Qu S., Xu Z., Zhang A., Yan M., Li Y. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. Journal of Applied Physics. 2014. Vol.115. No.15. 4 p. https://doi.org/10.1063/1.4869917

26.  Gao X., Han X., Cao W.P., Li H.O., Ma H.F., Cui T.J. Ultra-Wideband and High-Efficiency Linear Polarization Converter Based on Double V-Shaped Metasurface. IEEE Transactions on Antennas and Propagation. 2015. Vol.63. No.8. P.3522-3530. https://doi.org/10.1109/tap.2015.2434392

27.  Lin B.-Q., Da X.-Y., Wu J.-L., Li W., Fang Y.-W., Zhu Z.-H. Ultra-Wideband and High-Efficiency Cross Polarization Converter Based on Aisotropic Metasurface. Microwave and optical technology letters. 2003. Vol.58. No.10. P. 2402 – 2405. https://doi.org/10.1002/mop.30056

28.  Mei Z.L., Ma X.M., Lu C., Zhao Y.D. High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface. AIP Advances. 2017. Vol.7. No.12. 6 p. Available at: https://aip.scitation.org/-doi/pdf/10.1063/1.5003446  https://doi.org/10.1063/1.5003446

29.  Fang C., Cheng Y., He Z., Zhao J., Gong R. Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface. Optic – International Journal for Light and Electron Optics. 2017. Vol.137. P.148-155. https://doi.org/0.1016/j.ijleo.2017.03.002

30.  Dong G.-X., Shi H., Xia S., Li W., Zhang A., Xu Z., Wei X.-Y. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes. Chinese Physics B. 2016. Vol.25. No.8. 6 p. https://doi.org/10.1088/1674-1056/25/8/084202

31.  Zhang L., Zhou P., Chen H., Lu H., Xie J., Deng L. Adjustable wideband reflective converter based on cut-wire metasurface. Journal of Optics. 2015. Vol.17. No.10. 7 p. https://doi.org/10.1088/2040-8978/17/10/105105

32.  Sun H., Gu C., Chen X., Li Z., Liu L., Martin F. Ultra-wideband and broad-angle linear polarization conversion metasurface. Journal of applied physics. 2017. Vol.121. No.17. 6 p. https://doi.org/10.1063/1.4982916

33.  Xu J., Li R., Wang S., Han T. Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express. 2018. Vol.26. No.20. 7 p. https://doi.org/10.1364/oe.26.026235

34.  Costa F., Monorchio A., Manara G. Efficient Analysis of Frequency-Selective Surfaces by a Simple Equivalent-Circuit Model. IEEE Antennas and Propagation Magazine. 2012. Vol.54. No.4. P.35-48. https://doi.org/10.1109/map.2012.6309153

35.  Sievenpiper D., Lijun Z., Broas R.F.J., Alexopolous N.G., Yablonovitch E., High-impedance electromagnetic surfaces with a forbidden frequency band // Microwave Theory and Techniques, IEEE Transactions on. 1999. Vol.47. P.2059-2074. https://doi.org/10.1109/22.798001

36. Tretyakov S.A. Metasurfaces for general transformations of electromagnetic fields. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. Vol.373. No.2049. P.1-10. Available at: https://royalsocietypublishing.org/doi/pdf/-10.1098/rsta.2014.0362 https://doi.org/0.1098/rsta.2014.0362

37. Su P., Zhao Y., Jia S., Shi W., Wang H. An ultra-wideband and polarization independent metasurface for RCS reduction. Scientific Reports. 2016. Vol.6. No.1. 8 p. Available at: https://www.nature.com/articles/srep20387.pdf https://doi.org/10.1038/srep20387

 

For citation:

Blagovisnyy P.V., Semenikhin A.I. Full-wave and impedance models of ultra wideband thin twist-metapolarizers for cloacking coverings. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.8. https://doi.org/10.30898/1684-1719.2020.8.12.   (In Russian)