Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 8

Full text in Russian (pdf)

Russian page


DOI  https://doi.org/10.30898/1684-1719.2020.8.15

UDC 621.369.9


Ultra-wideband impulse sensing of the layered structure of the snow-soil cover. Experimental research


K. V. Muzalevskiy, S. V. Fomin

Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, Russia


The paper is received on August 20, 2020


Abstract. In this work, the processes of reflection of an ultrawideband (UWB) pulse with a duration of about 0.3 ns from thawed and frozen soil, during natural accumulation and melting of snow cover, were experimentally investigated. UWB pulses were synthesized on the basis of spectral measurements at horizontal polarization in the frequency range from 1.6 GHz to 8 GHz of the transmission coefficient between two horn antennas, the maxima of the radiation pattern of which were oriented at an angle of 35 to the normal, lowered onto a flat soil surface. Simultaneously with remote reflectometric measurements, contact measurements of the moisture and temperature profiles of the upper soil layer 0-17 cm, as well as the height and density of the snow cover were carried out. Experimental observations continued from November 8, 2019 to March 22, 2020. It is shown that the use of a UWB electromagnetic pulse with a duration of about 0.3 ns makes it possible to identify the thawed or frozen state of the soil at any time during the accumulation and melting of the snow cover (up to 30 cm high), as well as to estimate the value of the water equivalent of the snow cover with the standard deviation of 7.0 mm and the determination coefficient of 0.832. Experimental studies have shown that the development of pulsed UWB radar systems for remote sensing of the geophysical parameters of the layered structure of the snow-soil cover is promising.

Key words: radiolocation, ultra-wideband pulses, soil moisture, soil temperature, thawed and frozen state of the soil, snow cover, water equivalent of snow cover, dielectric constant.


1.     Burr R. et al. Design and Implementation of a FMCW GPR for UAV-based Mine Detection. IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). 2018. P.1-4.


2.     García Fernández M. et al. Synthetic Aperture Radar Imaging System for Landmine Detection Using a Ground Penetrating Radar on Board a Unmanned Aerial Vehicle. IEEE Access. 2018. Vol.6. P.45100-45112.  https://doi.org/10.1109/ACCESS.2018.2863572

3.     Pérez Cerquera M. et al. UAV for Landmine Detection Using SDR-Based GPR Technology, Robots Operating in Hazardous Environments Hüseyin Canbolat. IntechOpen. 2017. https://doi.org/10.5772/intechopen.69738. Available at: https://www.intechopen.com/books/robots-operating-in-hazardous-environments/uav-for-landmine-detection-using-sdr-based-gpr-technology

4.     Schartel M. et al. A Multicopter-Based Focusing Method for Ground Penetrating Synthetic Aperture Radars. IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain. 2018. P.5420-5423. https://doi.org/10.1109/IGARSS.2018.8518905

5.     Schartel M. UAV-Based Ground Penetrating Synthetic Aperture Radar. IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). 2018. https://doi.org/10.1109/ICMIM.2018.844350

6.     Zhang X. et al. Development and Preliminary Results of Small-Size Uav-Borne Fmcw SAR. IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain. 2018. P.7825-7828.  https://doi.org/10.1109/IGARSS.2018.8519235

7.     Kaundinya S. A UAS-based ultra-wideband radar system for soil moisture measurements. IEEE Radar Conference (RadarConf18). Oklahoma City, OK. 2018. P. 0721-0726. https://doi.org/10.1109/RADAR.2018.8378648

8.     Novyj kopter gotovyat dlya raboty v Arktike [New copter is prepared to work in Arctic]. Morskoj gosudarstvennyj universitet im. G.I. Nevel'skogo. Available at: http://www.msun.ru/ru/news/id-3849

9.     Arnold E. et al. HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms. Geosciences. 2018. No. 8(182).

10.   Eckerstorfer M. et al. UAV-borne UWB radar for snowpack surveys. Trpmso Science Park, Tromso. 2018. 13p. https://norut.no/sites/default/files/norut_rapport_8-2018_0.pdf

11. Finkel'shtejn M.I., Karpuhin V.I., Kutev V.A., Metelkin V.N.. Podpoverhnostnaya radiolokaciya [Subsurface radiolocation]. Moscow, Radio i Svyaz' Publ. 1994. 216 p. (In Russian)

12.  Finkel'shtejn M.I., Kutev V.A. O zondirovanii morskogo l'da pri pomoshchi posledovatel'nosti videoimpul'sov [About sensing sea ice with a video pulse train]. Radiotekhnika i elektronika. 1972. Vol.17. No.10. P.2107-2112. (In Russian)

13.   Finkel'shtejn M.I., Mendel'son V.L., Kutev V.A. Radiolokaciya sloistyh zemnyh pokrovov [Radiolocation of layered earth structure]. M.: Sovetskoe radio. 1977. 176 s. (in Russian).

14.   Finkel'shtejn M.I., Kutev V.A., Zolotarev V.P. Primenenie radiolokacionnogo podpoverhnostnogo zondirovaniya v inzhenernoj geologii [Application of radar subsurface sounding in engineering geology]. M.: Nedra. 1986. 128 s. (in Russian).

15.   Arcone S., Yankielun N. 1.4 GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A. Journal of Glaciology. 2000. Vol.46. No.154. P.477-490.


16.  Kwok R. e al. Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge. The Cryosphere. 2017. No.11. P.2571-2593. https://doi.org/10.5194/tc-11-2571-2017.

17. Sold L. et al. Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. Journal of Glaciology. 2013. Vol.59. P.1047-1059. https://doi.org/10.3189/2013JoG13J015.

18.   Gusmeroli A., Wolken G., Arendt A. Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska. Annals of Glaciology. 2014. Vol.55(67). P.78-88. https://doi.org/10.3189/2014AoG67A029

19.   Clair J.S., Holbrook W.S. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis. The Cryosphere. 2017. Vol.11. P.2997–3009. https://doi.org/10.5194/tc-11-2997-2017

20.   Holbrook W. S., Miller S. N. Provart M. A. Estimat-ing snow water equivalent over long mountain transects using snow mobile-mounted ground-penetrating radar. Geophysics. 2016. Vol. 81. P. WA183–WA193.


21.   Griessinger N., Mohr F., Jonas T. On measuring snow ablation rates in alpine terrain with a mobile GPR device. The Cryosphere Discuss. 2017. https://doi.org/10.5194/tc-2016-295.

22.  Bradford J.H. et al. Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime. Water Resources Research. 2009. Vol.45. No.8. P.W08403.

23.  Sundström N. et al. Field evaluation of a new method for estimation of liquid water content and snow water equivalent of wet snowpacks with GPR. Hydrol. Res. 2013. Vol.44. P.600–613.

24.  Lundberg A. et al. Spatiotemporal Variations in Snow and Soil Frost—A Review of Measurement Techniques. Hydrology. 2016. Vol.3. No.28.

25.  Jadoon K.Z. et al. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar. Remote Sens. 2015. Vol.7. P. 2041-12056.

26.   Butnor J.R. et al. Measuring soil frost depth in forest ecosystems with ground penetrating radar. Agricultural and Forest Meteorology. 2014. No.192-193. P.121-131.

27.  Steelman C.M. et al. Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar. Hydrol. process. 2010. Vol. 24. No.14. P.2022–2033.

28.   Ma Y. et al. Hillslope-scale variability in seasonal frost depth and soil water content investigated by GPR on the southern margin of the sporadic permafrost zone on the Tibetan plateau. Permafr. Periglac. Process. 2015. Vol.26. P. 321-334.

29.   Lundberg A., Thunehed H. Snow wetness influence on impulse radar snow surveys theoretical and laboratory study. Nord. Hydrol. 2000. Vol. 31. P.89–106.

30.   Harris F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE. 1978. Vol.66. No.1. P.51-83.

31.   Kalitkin N. N. Chislennye metody [Numerical methods].   St-Petersburg, BHV-Peterburg Publ. 2011. 592 p. (In Russian)

32.  Brekhovskikh L.M. Waves in Layered Media. New York, USA. Academic.  1960. 561 p.

33.  Tiuri M., et al. The complex dielectric constant of snow at microwave frequencies. IEEE Journal of Oceanic Engineering. 1984. Vol.9. No.5. P.377-382.

34.  Mironov V.L., et al. A dielectric model of thawed and frozen Arctic soils considering frequency, temperature, texture and dry density. International Journal of Remote Sensing. 2020. Vol.41. No.10. P.3845-3865.


For citation:

Muzalevskiy K.V., Fomn S.V. Ultra-wideband impulse sensing of the layered structure of the snow-soil cover. Experimental research. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.8. https://doi.org/10.30898/1684-1719.2020.8.15.   (In Russian)