Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 8

Full text in Russian (pdf)

Russian page


DOI https://doi.org/10.30898/1684-1719.2020.8.3

UDC 621.372, 537.9


Ferromagnetic resonance technique for STT-MRAM material qualification


A. P. Mikhailov 1,2, A. D. Belanovsky 1, N. Y. Dmitriev 1,2, M. I. Gilmanov 3, A. V. Semeno 3, A. N. Samarin 3, A. V. Trofimov 1,2, A. V. Khvalkovsky 1

1 Crocus Nano Electronics LLC, Volgogradskiy prosp., 42-5, Moscow 109316, Russia

2 Moscow Institute of Physics and Technology, Russia, Institutskiy per., 9, Dolgoprudny 141170, Moscow region, Russia

3 Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, Moscow 119991, Russia

The paper is received on July 13, 2020


Abstract. The experimental setup for measurement of the critical parameters of material compositions for Spin-Transfer-Torque Magnetic Random-Access Memory (STT-MRAM) based on the ferromagnetic resonance effect (FMR), was described in details. New configuration of a measurement setup with a magnetic field directed along the waveguide line is proposed. This configuration is also applicable for the measurement of thin-film ferrimagnets, ferromagnets and multiferroics.

Keywords: ferromagnetic resonance, spintronics, STT-MRAM, waveguide line.


1. Arkad'yev V. K. Absorption of electric waves in parallel wires. Zh. Russk. Fiz.-Khim. Obshchestva, Otdel Fiz. – Journal of Russian Physical and Chemical Society. Physics. 1912. Vol.44. P.165-200 (In Russian). Available at: https://phys.msu.ru/upload/iblock/f1f/arkadiev.pdf

2. Arias R., Mills D. L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Physical Review B. 1999.  Vol.60. No.10. P.7395. https://doi.og/10.1103/PhysRevB.60.7395

3. Sun J. Z. Spin-current interaction with a monodomain magnetic body: A model study. Physical Review B. 2000. Vol.62. No.1. P.570.   https://doi.org/10.1103/PhysRevB.62.570

4. Khvalkovskiy A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. Journal of Physics D: Applied Physics.  2013. Vol.46. No.7. P.074001. https://doi.org/10.1088/0022-3727/46/7/074001

5. Slonczewski J. C. et al. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials. 1996. Vol.159. No.1. P.L1. Available at: http://nsdl.library.cornell.edu/websites/wiki/index.php/PALE_ClassicArticles/archives/classic_articles/issue2_giant_magnetoresistance/mss14_JMM-1996.pdf

6. Nembach H. T. et al. Perpendicular ferromagnetic resonance measurements of damping and Land e ́ g− factor in sputtered (Co 2 Mn) 1− x Ge x thin films. Physical Review B. 2011. Vol.84. No.5. P.054424.  


7. Kittel C. Ferromagnetic resonance. J. Phys. Radium. 1951. No.12. P.291-302. https://doi.org/10.1051/jphysrad:01951001203029100

8. Beleggia M. et al. Demagnetization factors for elliptic cylinders. Journal of Physics D: Applied Physics. 2005. Vol.38. No.18. P.3333. https://doi.org/10.1088/0022-3727/38/18/001

9. Maksymov I. S., Kostylev M. Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures. Physica E: Low-dimensional Systems and Nanostructures. 2015. Vol.69. P.253-293.  https://doi.org/10.1016/j.physe.2014.12.027

10.  Bedair S. S., Wolff I. Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for (M) MIC's. IEEE Transactions on Microwave Theory and Techniques. 1992. Vol.40. No.1. P.41-48.  https://doi.org/10.1109/22.108321

11.  McGregor I., Aghamoradi F., Elgaid K. An approximate analytical model for the quasi-static parameters of elevated CPW lines. IEEE transactions on microwave theory and techniques. 2010. Vol.58. No.12. P.3809-3814.  https://doi.org/0.1109/TMTT.2010.2086552

12.  Farrokhrooz M., Keivani H., Fazaelifard M. Computation of characteristic impedance of CPW, grounded CPW (GCPW) and microstrip lines in a wide frequency range using TLM approach. Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006. P.226–231. Available at: http://www.wseas.us/e-library/conferences/2006istanbul/papers/520-110.pdf

13.  Kalarickal S. S. et al. Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods. Journal of Applied Physics. 2006. Vol.99. No.9. P.093909. https://doi.org/10.1063/1.2197087

14.  Aktas, B., & Mikailov, F., ed. Advances in Nanoscale Magnetism. Proceedings of the International Conference on Nanoscale Magnetism ICNM-2007. Istanbul, Turkey. Springer Science & Business Media, 2008. Vol.122. ISBN 978-3-540-69881-4. Available at:


15. Heinrich B., Cochran J. F., Hasegawa R. ÔÌÐ linebroadening in metals due to twomagnon scattering. Journal of Applied Physics. 1985. Vol.57. No.8. P.3690-3692. https://doi.org/10.1063/1.334991

16.  McMichael R. D., Twisselmann D. J., Kunz A. Localized ferromagnetic resonance in inhomogeneous thin films. Physical Review Letters. 2003. Vol.90. No.22. P.227601. https://doi.org/10.1103/PhysRevLett.90.227601

17.  McMichael R. D. A mean-field model of extrinsic line broadening in ferromagnetic resonance. Journal of Applied Physics. 2008. Vol.103. No.7. P.07B114. https://doi.org/10.1063/1.2837887

18.  Shaw J. M., Nembach H. T., Silva T. J. Roughness induced magnetic inhomogeneity in Co/Ni multilayers: Ferromagnetic resonance and switching properties in nanostructures. Journal of Applied Physics. 2010.  Vol.108. No.9. P.093922. https://doi.org/10.1063/1.3506688

19.  Baryakhtar V. G. Phenomenological description of relaxation processes in magnets. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki – Journal of Experimental and Theoretical Physics.1984. Vol.87. No.4. P.501-1508. Available: http://www.jetp.ac.ru/cgi-bin/r/index/r/87/4/p1501?a=list  (In Russian)

20.  Tserkovnyak Y., Hankiewicz E. M., Vignale G. Transverse spin diffusion in ferromagnets. Physical Review B. 2009. Vol79. No.9. P.094415.   https://doi.org/10.1103/PhysRevB.79.094415

21.  Farle M., Silva T., Woltersdorf G. Spin dynamics in the time and frequency domain. In Magnetic Nanostructures. Springer, Berlin, Heidelberg, 2013. P.37-83. Available at: https://link.springer.com/book/10.1007/978-3-642-32042-2


For citation:

Mikhailov A.P., Belanovsky A.D., Dmitriev N.Y.,  Gilmanov M.I., Semeno A.V., Samarin A.N., Trofimov A.V., Khvalkovsky A.V. Ferromagnetic resonance technique for STT-MRAM material qualification. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 8. https://doi.org/10.30898/1684-1719.2020.8.3  (In Russian)