Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 8
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.8.9

UDC 621.396.67

 

Maximum permissible parameters of an electromagnetic field pulse with a linearly increasing amplitude in the superface antenna of a high power microwave generator

 

A. A. Volkov

Military Educational-Research Centre of Air Force «Air Force Academy named after professor N.E. Zhukovsky and Y.A. Gagarin», Staryh Bolshevikov 54A, Voronezh, 394064, Russia

 

The paper is received on July 29, 2020

 

Abstract. The efficiency of high power microwave generators in the solving a number of applied problems directly depends on the power of the electromagnetic field emitted into the atmosphere. In atmospheric conditions, the radiation power is always limited by the electrical breakdown of the air in the antenna. Typical antennas for high power microwave generators are superface antennas. Therefore, studies related to the search for ways to increase the electric strength of superface antennas are of practical interest. One of these ways is associated with the use of pulses with a linearly increasing amplitude of the electric field strength. The purpose of the research is to determine the maximum permissible breakdown parameters of pulses of this type (maximum amplitude of the electric field strength, peak power and energy) in the superface antenna of a high power microwave generator and compare them with similar parameters of pulses with constant amplitude. The basis for solving the problem is the breakdown criterion and the equation of continuity of electrons in air. As a result, expressions were obtained for estimating the maximum permissible breakdown parameters of a pulse with linearly increasing amplitude in a superface antenna. The above parameters are compared with similar parameters of a pulse with constant amplitude. It is shown that the breakdown field and the maximum permissible peak power of a pulse with linearly increasing amplitude are higher, and the maximum permissible energy is lower than corresponding parameters of a pulse with a constant amplitude at the same duration. The regularities connecting the maximum permissible energy and the peak power of the pulses have been determined. It was found that at the same maximum permissible peak power, the energy of a pulse with linearly increasing amplitude is higher than that of a pulse with constant amplitude.

Key words: air breakdown, superface antenna, microwave generator.

References

1.     Didenko A.N. SVCh-energetika: Teoriya i praktika [Microwave Energy: Theory and Practice]. Moscow, Nauka Publ., 2003. 446 p. (In Russian)

2.     Bromborsky A., Kehs R.A., Hattlin G.A., Graybell S.E., Still M.E., Clarc M.C., Bartach R., Davis H.A., Sherwood E., Thode L.E. Preliminary results from a reflex diode experiment aurora intense pulsed relativistic electron beam generator. IEEE Conference Record – Abstracts of the 1987 IEEE International Conference on Plasma Science. Arlington, VA, 1987. P. 39.

3.     Bugaev S.P., Kanavets V.I., Klimov A.I., Koshelev V.I., Slepkov A.I., Cherepenin V.A. Interaction of the electron flow and the electromagnetic field in a multiwave Cherenkov generator with a power of 1010 watts. Journal of Communications Technology and Electronics. 1987. Vol. 32. No. 7. P. 1488–1498.

4.     Ayzenberg G.Z. Antenny ul'trakorotkikh voln [Ultra short wave antennas]. Moscow, State publishing house of literature on communications and radio, 1957. 699 p. (In Russian)

5.     Fenstermachera Dan L., Frank von Hippelb. An atmospheric limit on nuclear- powered microwave weapons. Science & Global Security. 1991. Vol. 2. No 4. P. 30–324.

6.     Gould L. and Roberts L.W. Breakdown of air at microwave frequencies.  Journal of Applied Physics. 1956. Vol. 27. No 10. P. 1162–1170.

7.     Rukhadze A.A., Stolbetsov S.D., Tarakanov V.P. Vircators (review). Journal of Communications Technology and Electronics. 1992. Vol. 37. No 3. P. 385–396.

8.     Dubinov A.E., Selemir V.D. Electronic devices with virtual cathodes (review). Journal of Communications Technology and Electronics. 2002. Vol. 47. No. 6. P. 575–600.

9.     Cherepenin V.A. Relativistic multiwave oscillators and their possible applications. Physics-Uspekhi. 2006. Vol. 49. No. 10. P. 1097–1102.

10.  Vizitenko I.I. Relyativistskiye magnetrony [Relativistic magnetrons]. Moscow, Fizmatlit Publ., 2013. 360 p. (In Russian)

11.  Volkov A.A. Breakdown energy of air in a superface antenna. Elektromagnitnyye volny i elektronnyye sistemy – Electromagnetic waves and electronic systems. 2020. No 1–2. P. 96–101.

12.  Barashenkov V.S., Grachev L.P., Esakov I.I., Kostenko B.F., Khodataev K.V. and Yur'ev M.Z. Breakdown in air in a rising microwave field. Technical Physics. The Russian Journal of Applied Physics. 2000. Vol. 45. No. 10. P. 1265–1270.

13.  MacDonald A.D. Microwave Breakdown in Gases. New York, Wiley Publ., 1966. 201 p.

14.  Aleksandrov A.F., Yesakov I.I., Lomteva A.Yu, Bychkov V.L., Grachev L.P. Air ionization in a near-critical electric field. Technical Physics. The Russian Journal of Applied Physics. 2006. Vol. 51. No. 3. P. 330–335.

15.  Gurevich A.V. Ionization of the lower ionosphere under the action of powerful radio pulses. Geomagnetism and Aeronomy. 1979. Vol. 19. No. 4. P. 633–640. (In Russian)

16.  Zarin A.S., Kuzovnikov A.A., Shibkov V.M. Svobodno lokalizovannyy SVCh-razryad v vozdukhe [Freely localized microwave discharge in air]. Moscow, Neft' i Gaz Publ., 1996. 204 p. (In Russian)

 

For citation:

Volkov A.A. Maximum permissible parameters of an electromagnetic field pulse with a linearly increasing amplitude in the superface antenna of a high power microwave generator. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.8. https://doi.org/10.30898/1684-1719.2020.8.9. (In Russian)