Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.8.3
PREDICTING THE MAGNITUDE OF ELECTROSTATIC DISCHARGE
INTERFERENCE IN AN ELECTRONIC DEVICE
USING AN ARTIFICIAL NEURAL NETWORK
Z.M. Gizatullin, R.R. Mubarakov
Kazan National Research Technical University
named after A.N. Tupolev-KAI,
420111, Russia, Kazan, Karl Marx str.10
The paper was received May 17, 2024
Abstract. Electrostatic discharge is a dangerous source of natural electromagnetic interference to the operation of modern electronic devices. Although measures have been taken to reduce and remove electrostatic discharge from the operating area of electronic devices, the absence of such discharge cannot be guaranteed. Therefore, when designing modern electronic devices, it is necessary to take into account the possibility of such electrostatic discharges in advance and take protective measures. The article proposes a method for predicting the amplitude of interference in the communication line of an electronic device when exposed to an electrostatic discharge on its metal case. The technique is based on the use of an artificial neural network. The technique includes the analysis of significant input parameters that affect the amount of interference in an electronic device; development of an experimental stand for measuring interference; choosing the structure and parameters of a neural network for predicting interference; choosing a training method for an artificial neural network; choosing a metric for assessing the quality of training; normalization of training data; training an artificial neural network using experimental noise data; predicting the amplitude of interference in the communication line of an electronic device when exposed to an electrostatic discharge on its body; where necessary, selecting and implementing electrostatic discharge protection measures. Examples of training an artificial neural network based on experimental data are given. The training was carried out for 572 epochs. For the training and testing sets, the discrepancy between the predicted data and the average measured noise values was 3.61% and 3.95%, respectively. Examples are given of predicting the amplitude of interference when exposed to electrostatic discharge. The results obtained indicate the possibility of practical use of an artificial neural network to solve problems of electromagnetic interference analysis.
Key words: neural network, interference, electrostatic discharge, electronic means, modeling, experiment, forecasting, technique.
Financing: The work was supported by the Kazan National Research Technical University named after A.N. Tupolev Strategic Academic Leadership Program (“PRIORITET–2030”).
Corresponding author: Gizatullin Zinnur Marselevich, zmgizatullin@kai.ru
References
1. Shkinderov M.S., Gizatullin Z.M. Issledovanie funkcionirovaniya sistemy kontrolya i upravleniya dostupom v usloviyah vozdejstviya elektrostaticheskih razryadov [Study of the functioning of the access control and management system under the influence of electrostatic discharges] //Radiotekhnika i elektronika. – 2018. – T. 63. – ¹. 11. – P. 1181-1187. (In Russian)
2. Kirillov V.Yu., Marchenko M.V., Tomilin M.M. Stendovye ispytaniya elementov i ustrojstv kosmicheskih apparatov na vozdejstvie elektrostaticheskih razryadov [Bench testing of spacecraft elements and devices for the effects of electrostatic discharges] //Vestnik Moskovskogo aviacionnogo instituta. – 2017. – T. 24. – ¹. 4. – P. 170-175. (In Russian)
3. Gizatullin Z.M., Nuriev M.G., Gizatullin R.M. Fizicheskoe modelirovanie pomekhoustojchivosti elektronnyh sredstv pri elektromagnitnom vozdejstvii industrial'nyh makroistochnikov [Physical modeling of noise immunity of electronic devices under the electromagnetic influence of industrial macrosources] //Radiotekhnika i elektronika. – 2018. – T. 63. – ¹. 1. – P. 97-102. (In Russian)
4. Safina R.M., Shkinderov M.S., Mubarakov R.R. Pomekhoustojchivost' sistem kontrolya i upravleniya dostupom v zdaniya pri vozdejstvii elektromagnitnyh pomekh po seti elektropitaniya [Noise immunity of control and management systems for access to buildings under the influence of electromagnetic interference through the power supply network] //Zhurnal radioehlektroniki. – 2021. – ¹ 6. (In Russian)
5. Keller R.B. Design for Electromagnetic Compatibility--In a Nutshell: Theory and Practice. – Springer Nature, 2023. – P. 416.
6. Kuznetsov V., Kechiev L. Charged board model ESD simulation for PCB mounted MOS transistors //IEEE Transactions on Electromagnetic Compatibility. – 2015. – Ò. 57. – ¹. 5. – P. 947-954.
7. Luo M., Huang K.M. Prediction of the electromagnetic field in metallic enclosures using artificial neural networks //Progress In Electromagnetics Research. – 2011. – Ò. 116. – P. 171-184.
8. Khadse C.B., Chaudhari M.A., Borghate V.B. Electromagnetic compatibility estimator using scaled conjugate gradient backpropagation based artificial neural network //IEEE Transactions on Industrial Informatics. – 2016. – Ò. 13. – ¹. 3. – P. 1036-1045.
9. Gizatullin Z.M., Gizatullin R.M., Mubarakov R.R. Modelirovanie pomekh v elektronnom ustrojstve pri vozdejstvii impul'snogo magnitnogo polya s ispol'zovaniem iskusstvennoj nejronnoj seti [Modeling interference in an electronic device under the influence of a pulsed magnetic field using an artificial neural network] //Zhurnal radioelektroniki. – 2024. – ¹ 5. (In Russian)
10. Zhechev E.S. and etc. Eksperimental'nye issledovaniya zerkal'no-simmetrichnogo modal'nogo fil'tra vo vremennoj i chastotnoj oblastyah [Experimental studies of a mirror-symmetric modal filter in the time and frequency domains] //Sistemy upravleniya, svyazi i bezopasnosti. – 2019. – ¹ 2. – P.162-179. (In Russian)
11. Alkhadzh Kh.A. and etc. Verifikaciya modelirovaniya provodnyh antenn metodom momentov [Verification of simulation of wired antennas by the method of moments] //Zhurnal radioehlektroniki. – 2021. – ¹ 11. (In Russian)
12. De Marchi L., Mitchell L. Hands-On Neural Networks: Learn how to build and train your first neural network model using Python. – Packt Publishing Ltd, 2019.
13. Andreyanov N.V. and etc. Analiz stenda bortovoj sistemy dlya metodov obnaruzheniya osnovannyh na glubokih nejronnyh setyah [Analysis of an on-board system test bed for detection methods based on deep neural networks] //Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2022. – ¹ 5. – P.13-16. (In Russian)
14. Gizatullin R.M. et al. The analysis of the noise immunity of an electronic device under the action of electrostatic discharge //2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). – IEEE, 2018. – P. 332-335.
15. Evdokimova T.S., Andreyanov N.V., Fatkullina L.F. Metody rasshireniya naborov dannyh na osnove obucheniya s podkrepleniem [Methods for expanding data sets based on reinforcement learning] //Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2023. – ¹ 11. – P.59-62. (In Russian)
16. Gizatullin Z.M. and etc. Issledovanie algoritma analiza izobrazhenij raduzhnoj obolochki glaza na osnove svertochnoj nejronnoj seti [Study of an algorithm for analyzing iris images based on a convolutional neural network] // Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2023. – ¹ 6. – P.55-57. (In Russian)
17. Gizatullin Z.M. and etc. Snizhenie elektromagnitnyh pomekh i zashchita informacii v vychislitel'noj tekhnike s pomoshch'yu ekraniruyushchih stekol [Reducing electromagnetic interference and protecting information in computer technology using shielding glasses] //Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. – 2017. – ¹. 3 (35). – P. 46-57. (In Russian)
18. Gazizov T.R. and etc. Puti resheniya aktual'nyh problem proektirovaniya radioelektronnyh sredstv s uchetom elektromagnitnoj sovmestimosti [Ways of solving actual problems of designing radio-electronic facilities with regard to electromagnetic compatibility] //Tekhnika radiosvyazi. – 2014. – ¹ 2(22). – P.11-22. (In Russian)
19. Safina R.M., Shkinderov M.S. Povyshenie pomekhoustojchivosti sistemy kontrolya i upravleniya dostupom pri vozdejstvii elektrostaticheskogo razryada [Increasing the noise immunity of the access control and management system under the influence of electrostatic discharge] //Zhurnal radioelektroniki. – 2020. – ¹. 8. – P. 15-15. (In Russian)
20. Gizatullin Z.M. and etc. Povyshenie ustojchivosti detektora konturov Kenni k vozdejstviyu pomekh [Increasing the stability of the Canny contour detector to interference] //Nauchno-tekhnicheskij vestnik Povolzh'ya. Uchrediteli: OOO «Rashin Sajns». – 2023. – ¹ 7. – P. 25-28. (In Russian)
21. Kirillov V.Yu., Zhukov P.A., Torlupa A.A. Primenenie radiopogloshchayushchih materialov dlya oslableniya vysokochastotnyh pomekh v elektricheskih cepyah elektrotekhnicheskih kompleksov letatel'nyh apparatov [The use of radio absorbing materials to reduce high-frequency interference in electrical circuits of electrical systems of aircraft] //Ehlektrichestvo. – 2022. – ¹ 4. – P.66-71. (In Russian)
22. Gibadullin R.F., Vershinin I.S., Glebov E.E. Razrabotka prilozheniya dlya associativnoj zashchity fajlov [Development of an application for associative file protection] //Inzhenernyj vestnik Dona. – 2023. – ¹ 6(102). – P.118-142. (In Russian)
23. Sharipov R.R., Sitnikov A.N. Problemy pri razrabotke sistem raspoznavaniya pol'zovatelej po klaviaturnomu pocherku [Problems in the development of user recognition systems based on keyboard handwriting] // Vestnik Tekhnologicheskogo universiteta. – 2019. – T. 22. – ¹ 10. – P. 143-147. (In Russian)
24. Shalagin S.V. Raspredelyonnoe vychislenie bystrogo preobrazovaniya Fur'e v arhitekture FPGA [Distributed calculation of fast Fourier transform in FPGA architecture] // Vestnik Tekhnologicheskogo universiteta. – 2019. – T. 22. – ¹ 2. – P. 155-158. (In Russian)
25. Gibadullin R.F., Vershinin I.S. Associativnaya zashchita chislovyh svedenij v tekstovyh dokumentah s primeneniem biblioteki Parallel Framework platformy .NET [Associative protection of numeric information in text documents using the Parallel Framework library of the .NET platform] //Computational Nanotechnology. – 2023. – ¹ 3. – P.121-129. (In Russian)
For citation:
Gizatullin Z.M., Mubarakov R.R. Predicting the magnitude of electrostatic discharge interference in an electronic device using an artificial neural network. // Journal of Radio Electronics. – 2024. – ¹ 8. https://doi.org/10.30898/1684-1719.2024.8.3 (In Russian)