Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.8.8
ELECTROELASTICITY OF PIEZOELECTRIC FILM ACTUATOR
WITH SYSTEM OF INTERACTING INTERDIGITATED ELECTRODES
A.A. Pan’kov
Perm National Research Polytechnic University,
614990, Perm, Komsomolsky ave.,29
The paper was received May 18, 2024.
Abstract. An electromechanical mathematical model of functioning of a piezoelectric CDS-actuator in the form of a piezoelectric cylindrical shell with double spirals of interacting electrodes mounted on the surface of the shell has been developed. Disclosed is a method of making a piezoelectric CDS-actuator through preliminary creation of a CDS-actuator scan in form of a flexible planar rectangular piezoelectric actuator with arrangement of interacting rectilinear «interdigitated» electrodes at an angle to the base of the CDS-scan. Numerical modeling of deformation fields and modal analysis of the first three forms and resonance frequencies of oscillations for single-layer and double-layer CDS-actuators were performed.
Key words: piezoelectric CDS-actuator, double spiral of electrodes, electroelasticity, modal analysis, numerical modeling.
Financing: The results were obtained within the framework of the State task of the Ministry of Science and Higher Education of the Russian Federation (project no FSNM-2023-0006).
Corresponding author: Pan’kov Andrey A., a_a_pankov@mail.ru
References
1. Zhu D., Almusallam A., Beeby S.P., Tudor J., Harris N.R. (2010) A bimorph multi-layer piezoelectric vibration energy harvester. PowerMEMS 2010 Proceedings. Belgium, Leuven. P. 1–4.
2. Williams C.B., Yates R.B. (1996) Analysis of a microelectric generator for Microsystems. Sensors and Actuators A: Physical. V. 52. No. 1-3. P. 8–11.
3. Liu H., Zhong J., Lee C., Lee S.-W., Lin L. (2018) A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews. V. 5. No. 4. P. 041306. https://doi.org/10.1063/1.5074184
4. Ivan I.A., Rakotondrabe M., Lutz P., Chaillet N. (2009) Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. Review of Scientific Instruments. American Institute of Physics. V. 80. No. 6. P. 065102-1/065102-8. https://doi.org/10.1063/1.3142486
5. Bansevičius R., Navickaitė S., Jūrėnas V., Mažeika D., Lučinskis R., Navickas J. (2013) Investigation of novel design piezoelectric bending actuators. Journal of Vibroengineering. V. 15. No. 2. P. 1064–1068.
6. Patent RF ¹ 2099754. Jelstaun Korporejshn N.V. Deformiruemoe zerkalo na osnove mnogoslojnoj aktivnoj bimorfnoj struktury [Deformable mirror based on multilayer active bimorph structure]. Data zayavki: 17.10.1996. Data publikacii: 20.12.1997. 7 p. URL: https://www.fips.ru/registers-doc-view/fips_servlet (in Russian)
7. Mouhli M. (2005) Analysis and shape modeling of thin piezoelectric actuators. Virginia Commonwealth University Publ., 100 p. https://scholarscompass.vcu.edu/etd/1552
8. Yamada H., Sasaki M., Nam Y. (2008) Active vibration control of a micro-actuator for hard disk drives using self-sensing actuator. Journal of Intelligent Material Systems and Structures. V. 19. No. 1. P. 113–123. https://doi.org/10.1177/1045389X07083693
9. El-Sayed A.M., Abo-Ismail A., El-Melegy M.T., Hamzaid N.A., Osman N.A.A. (2013) Development of a micro-gripper using piezoelectric bimorphs. Sensors. V. 13. P. 5826–5840. https://doi.org/10.3390/s130505826
10. Zhou J., Dong L., Yang W. (2021) A double-acting piezoelectric actuator for helicopter active rotor. Actuators. No. 10(247). P. 1–15. https:// doi.org/10.3390/act10100247
11. Abedian B., Cundari M. (1993) Resonant frequency of a polyvinylidene flouride piezoelectric bimorph: the effect of surrounding fluid. Proceedings Smart Structures and Materials. V. 1916: Smart Materials. 23 July 1993. https://doi.org/10.1117/12.148486
12. Patent RF ¹ 2723567. Lopast' vozdushnogo vinta s upravlyaemoj geometriej profilya [Propeller blade with controlled profile geometry] / Pan'kov A.A., Anoshkin A.N., Pisarev P.V. Data zayavki: 18.11.2019. Data publikacii: 16.06.2020. 5 p. URL: https://www.fips.ru/registers-doc-view/fips_servlet (in Russian)
13. Patent US 2003/0056351 A1. Piezoelectric Macro-Fiber Composite Actuator and Method for Making Same / Wilkie W.K., et al. Application Publ. March 27, 2003.
14. Emad D, Fanni MA, Mohamed AM, Yoshida S. (2021) Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method. Materials (Basel). No. 14(15). P. 4316.
15. Park J.-S., Kim J.-H. (2005) Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades. Smart Mater. Struct. No. 14. P. 745–753. doi:10.1088/0964-1726/14/4/033
16. Patent RU ¹ 2803015. P'ezoelektricheskij MDS-aktyuator [Piezoelectric MDS actuator] / Pan'kov A.A., opubl.: 05.09.2023 Byul. ¹ 25, zayavka ¹ 2023109123 ot 11.04.2023 g. (in Russian)
17. Patent RU ¹ 2801619. P'ezoelektricheskij CDS-aktyuator [Piezoelectric CDS actuator] / Pan'kov A.A., opubl.: 11.08.2023 Byul. ¹ 23, zayavka ¹ 2023111440 ot 03.05.2023 g. (in Russian)
18. Patent RU ¹ 2811420. Sposob izgotovleniya p'ezoelektricheskogo aktyuatora [Manufacturing method of piezoelectric actuator] / Pan'kov A.A., opubl.: 11.01.2024 Byul. ¹ 2, zayavka ¹ 2023127236 ot 24.10.2023 g. (in Russian)
19. Dong X.-J., Meng G. (2006) Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method. International Journal of Advanced Manufacturing Technology. V. 27. P. 841–844. doi:10.1007/s00170-004-2290-5
For citation:
Pan’kov A.A. Electroelasticity of piezoelectric film actuator with system of interacting interdigitated electrodes. // Journal of Radio Electronics. – 2024. – ¹. 8. https://doi.org/10.30898/1684-1719.2024.8.8 (In Russian)