Journal of Radio Electronics. eISSN 1684-1719. 2024. №8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.8.9
Feasibility of the matched‐field source localization
within diffraction and multiple reflections
M.S. Lytaev
St. Petersburg Federal Research Center of the Russian Academy of Sciences
199178, Russia, Saint Petersburg, 14 Linia, 39
The paper was received May 20, 2024.
Abstract. The problem of localizing the source of monochromatic radiation in two-dimensional space is considered. The space contains several arbitrary placed thin vertical knife-edges, which leads to diffraction and multiple reflection effects. Complex field amplitude measurements and environment parameters are considered as input data for the mathematical model. The problem is formulated using the method of conjugate equations. The two most commonly used varieties of the matched field processing method are analyzed: the Bartlett method and the minimum variance method. Numerical experiments were carried out for various locations of knife-edges and receivers. Stability with respect to the location of knife-edges is analyzed. It has been shown that the mentioned methods can be successfully used to localize radiation sources under conditions of multiple reflection and line of sight.
Key words: Inverse problem, source localization, matched field processing, ill-posed problem
Financing: This study was supported by the Russian Science Foundation grant №23-71-00069.
Corresponding author: Lytaev Mikhail Sergeevich, mlytaev@yandex.ru
References
1. Colton D. L., Kress R., Kress R. Inverse acoustic and electromagnetic scattering theory. – Berlin : Springer, 1998.
2. Tikhonov А. N. et al. Numerical methods for the solution of ill-posed problems. – Springer Netherlands, 1995.
3. Baggeroer A. B., Kuperman W. A., Mikhalevsky P. N. An overview of matched field methods in ocean acoustics //IEEE Journal of Oceanic Engineering. – 1993. – Т. 18. – №. 4. – С. 401-424.
4. Sazontov A. G., Malekhanov A. I. Matched field signal processing in underwater sound channels //Acoustical Physics. – 2015. – Vol. 61. – pp. 213-230.
5. Машошин А. И. Практические задачи гидроакустики, решаемые с использованием алгоритмов обработки сигналов, согласованных со средой их распространения (обзор) [underwater acoustics problems solving with using matched field processing] //Фундаментальная и прикладная гидрофизика. – 2017. – Т. 10. – №. 1. – С. 37-48.
6. Collins M. D. et al. The multivalued Bartlett processor and source tracking //The Journal of the Acoustical Society of America. – 1995. – Т. 97. – №. 1. – С. 235-241.
7. Collins M. D., Fialkowski L. T., Lingevitch J. F. Localizing submerged acoustic sources under adverse conditions //Journal of Theoretical and Computational Acoustics. – 2022. – Т. 30. – №. 01.
8. Zala C. A., Ozard J. M. Matched‐field processing for a moving source //The Journal of the Acoustical Society of America. – 1992. – Т. 92. – №. 1. – С. 403-417.
9. Walter F. et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain //Nature communications. – 2020. – Т. 11. – №. 1.
10. Schippkus S., Hadziioannou C. Matched field processing accounting for complex Earth structure: method and review //Geophysical Journal International. – 2022. – Т. 231. – №. 2. – С. 1268-1282.
11. Gingras D. F. et al. Electromagnetic matched field processing for source localization //1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. – IEEE, 1997. – Т. 1. – С. 479-482.
12. Deygout J. Multiple knife-edge diffraction of microwaves //IEEE Transactions on Antennas and Propagation. – 1966. – Т. 14. – №. 4. – С. 480-489.
13. Vavilov S. A., Lytaev M. S. Modeling equation for multiple knife-edge diffraction //IEEE transactions on antennas and propagation. – 2019. – Т. 68. – №. 5. – С. 3869-3877.
14. Marchuk G.I. Adjoint equations and analysis of complex systems. – Springer Science & Business Media, 2013.
15. Marchuk G.I. Mathematical models in environmental problems. – Elsevier, 2011.
16. Mantzel W., Romberg J., Sabra K. Compressive matched-field processing //The Journal of the Acoustical Society of America. – 2012. – Т. 132. – №. 1. – С. 90-102.
17. Jensen F. B. et al. Computational ocean acoustics. – New York: Springer, 2014.
18. Vavilov S. A., Lytaev M. S. Modelling equation of electromagnetic scattering on thin dielectric structures //Journal of Mathematical Sciences. – 2019. – Т. 238. – С. 621-629.
19. Vavilov S. A., Lytaev M. S. Electromagnetic Waves Scattering on an Array Composed of Thin Dielectric Objects //Journal of Mathematical Sciences. – 2019. – Т. 243. – С. 689-697.
20. Apaydin G. et al. A novel two-way finite-element parabolic equation groundwave propagation tool: Tests with canonical structures and calibration //IEEE transactions on geoscience and remote sensing. – 2011. – Т. 49. – №. 8. – С. 2887-2899.
21. Ахияров В. В. Вычисление множителя ослабления при обратном рассеянии от земной поверхности методом параболического уравнения [Attenuation factor calculation for backscattering from the terrain using the parabolic equation technique] //Журнал радиоэлектроники. – 2019. – №. 11.
22. Lytaev M. S. Tropospheric radio wave propagation modeling in Python 3 using PyWaveProp //2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation (APCAP). – IEEE, 2023.
For citation:
Lytaev M.S. Feasibility of the matched‐field source localization within diffraction and multiple reflections // Journal of Radio Electronics. – 2024. – №. 8. https://doi.org/10.30898/1684-1719.2024.8.9 (In Russian)