Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.8.1
TOWARDS THE DESIGN OF ELECTRON BEAM-CONTROLLED
(OPTICAL) FIBER MICROELECTROMECHANICAL SYSTEMS
BASED ON PIEZOELECTRIC AND FERROELECTRIC POLYMERS
Aleksandrov P.L. 1, Buryanskaya E.L. 2,3, Gradov O.V. 4, Iordansky A.L. 4,
Maklakova I.A. 4, Olkhov A.A. 4,5, Ratnovskaya A.V. 5, Kholuiskaya S.N. 4
1 Institute of Higher Nervous Activity and Neurophysiology of RAS,
117485, Russia, Moscow, 5A Butlerova Str.
2 Bauman Moscow State Technical University,
105005, Russia. Moscow, 2-nd Baumanskaya Str., 5.
3 National University of Science and Technology MISIS,
119526, Russia, Moscow, Leninsky prospekt, 1/2, bld. 1.
4 N.N. Semenov Federal Research Center for Chemical Physics RAS,
119991, Russia, Moscow, Kosygina str., 4, bld. 1.
5 Emanuel Institute of Biochemical Physics of Russian Academy of Sciences,
119334, Russia, Moscow, Kosygina str., 4.
The paper was received April 18, 2025.
Abstract. The problem of interaction of microelectromechanical systems and structures with electron and ion beams applied for the tasks of cryovacuum and space electronics and control of space telescopes is posed in the introduction, and the need for modeling the above effects in ground experiments is demonstrated. A technique for modeling the effect of charged particle beams on the polymer ferroelectric and piezoelectric structures, such as the interacting polymer fibers / «fuzzy neuromorphic connectomes» is proposed and implemented based on time-resolved electron microscopy tools with real-time data analysis, up to stroboscopic electron microscopy. In particular, a 2D Fourier transform and subsequent calculation of integral spatial characteristics (ISCs), analysis of the interframe correlations, complex wavelets are used. The experiments demonstrate piezoelectric fiber dynamics of microelectromechanical systems, detected by the change in 2D Fourier spectra of the fiber structures over time under the electron beam. The dynamics of fiber structures and networks with their topology changing under the electron beam is also shown. Time-lapse recording data prove that in some cases such structures can operate as drive (control) electromechanical elements, elastic elements (springs), contactors or locking (blocking) elements. The mechanical fracture of microfibers is also demonstrated. The possibility of coupling several fibers of different thickness and electrophysical properties to achieve complex control over microelectromechanical structures and systems based on them is also shown. The discussion points out the prospects of studying the above structures and systems both within the framework of polymer microelectromechanics or mechatronics, and for creating neuromimetic network structures for sensorics and adaptive motorics, actuated by the charged particle beams (electrons, ions, etc.) and inducing the fiber MEMS dynamics of the «artificial muscle» type, operating based on the principles of teinochemistry and chemomechanics of polymers with field-controlled adaptive «fuzzy» connection formation.
Keywords: microelectromechanical systems, elionics, electron beam processing, focused ion beam (FIB), time-resolved electron microscopy, stroboscopic electron microscopy, real-time FFT, fiber-optic microelectromechanical structures, ferroelectric polymers, piezoelectric polymers, «nanosport».
Financing: FFZE-2022-0009 («New generation polymers and composite materials with specified sets of mechanical and functional properties: synthesis, structure and properties, theory and modeling»).
Corresponding author: Gradov Oleg Valer'evich, gradov.chph.ras@gmail.com
References
1. Zhou H., Chong B.K., Stopford P., Mills G., Midha A., Donaldson L., Weaver J.M.R. Lithographically defined nano and micro sensors using “float coating” of resist and electron beam lithography // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. – 2000. – Ò. 18. – ¹. 6. – Ñ. 3594-3599. https://doi.org/10.1116/1.1321271
2. Chase J.G., Smith B.W. Overview of modern lithography techniques and a MEMS-based approach to high throughput rate electron beam lithography // Journal of intelligent material systems and structures. – 2001. – Ò. 12. – ¹. 12. – Ñ. 807-817. https://doi.org/10.1177/104538901400438109
3. Schuhmann T., Protz J., Fields D., Yin H., Cross A., He W., Bowes D., Ronald K. Phelps A. A MEMS fabrication approach for a 200GHz microklystron driven by a small-scaled pseudospark electron beam // Proc. SPIE. – 2010. – Ò. 7837. – Ñ. 42-47. https://doi.org/10.1117/12.864902
4. Singh K., Joyce R., Varghese S., Akhtar J. Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor // Sensors and Actuators A: Physical. – 2015. – Ò. 223. – Ñ. 151-158. https://doi.org/10.1016/j.sna.2014.12.033
5. Bhat S.P., Subhani K.N., Purakkat S. Plasma-assisted electron beam evaporation of low stress aluminium films for MEMS applications // ISSS Journal of Micro and Smart Systems. – 2021. – Ò. 10. – ¹. 1. – Ñ. 33-39. https://doi.org/10.1007/s41683-021-00067-4
6. Chase J.G., Smith B.W. MEMS-based precision motion control approach to high-throughput-rate electron beam lithography // Proc. SPIE. – 2001. – Ò. 4592. – Ñ. 450-461. https://doi.org/10.1117/12.449002
7. Kim H., Han C., Lee K. The Multi Arrayed Micro-scale Electron Optical System for Electron Beam Lithography using MEMS Technology // 電子情報通信学会技術研究報告 = IEICE technical report: 信学技報. – 2002. – Ò. 102. – ¹. 177. – Ñ. 27-31.
8. Grella L., Carroll A., Murray K., McCord M.A., Tong W.M., Brodie A.D., Gubiotti T., Sun F., Kidwingira F., Kojima S., Petric P. Digital pattern generator: an electron-optical MEMS for massively parallel reflective electron beam lithography // Journal of Micro/Nanolithography, MEMS, and MOEMS. – 2013. – Ò. 12. – ¹. 3. – Ñ. 031107-031107. https://doi.org/10.1117/1.JMM.12.3.031107
9. Kojima A., Ikegami N., Yoshida T., Miyaguchi H., Muroyama M., Nishino H., Yoshida S., Sugata M., Ohyi H., Koshida N., Esashi M. Massively parallel electron beam direct writing (MPEBDW) system based on micro-electro-mechanical system (MEMS)/nanocrystalineSi emitter array // Alternative Lithographic Technologies VI. – SPIE, 2014. – Ò. 9049. – Ñ. 240-246.
10. Ichimura T., Ren Y., Kruit P. A large current scanning electron microscope with MEMS-based multi-beam optics // Microelectronic engineering. – 2014. – Ò. 113. – Ñ. 109-113. https://doi.org/10.1016/j.mee.2013.07.008
11. Kojima A., Ikegami N., Yoshida T., Miyaguchi H., Muroyama M., Yoshida S., Totsu K., Koshida N., Esashi M. Development of a MEMS electrostatic condenser lens array for nc-Si surface electron emitters of the Massive Parallel Electron Beam Direct-Write system // Proc. SPIE. – 2016. – Ò. 9777. – Ñ. 201-209. https://doi.org/10.1117/12.2219338
12. Lobato-Dauzier N., Denoual M., Sato T., Tachikawa S., Jalabert L., Fujita H. Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope // Ultramicroscopy. – 2019. – Ò. 197. – Ñ. 100-104. https://doi.org/10.1016/j.ultramic.2018.12.002
13. Bochobza-Degani O., Elata D., Nemirovsky Y. An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices // Journal of Microelectromechanical Systems. – 2002. – Ò. 11. – ¹. 5. – Ñ. 612-620. https://doi.org/10.1109/JMEMS.2002.803280
14. Allen M., Raulli M., Maute K., Frangopol D.M. Reliability-based analysis and design optimization of electrostatically actuated MEMS // Computers & structures. – 2004. – Ò. 82. – ¹. 13-14. – Ñ. 1007-1020. https://doi.org/10.1016/j.compstruc.2004.03.009
15. Zhu G., Lévine J., Praly L., Peter Y.A. Flatness-based control of electrostatically actuated MEMS with application to adaptive optics: a simulation study // Journal of Microelectromechanical Systems. – 2006. – Ò. 15. – ¹. 5. – Ñ. 1165-1174. https://doi.org/10.1109/JMEMS.2006.880198
16. Zhang W.M., Meng G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation // IEEE sensors journal. – 2007. – Ò. 7. – ¹. 3. – Ñ. 370-380. https://doi.org/10.1109/JSEN.2006.890158
17. Zhang W.M., Meng G., Chen D.I. Stability, nonlinearity and reliability of electrostatically actuated MEMS devices // Sensors. – 2007. – Ò. 7. – ¹. 5. – Ñ. 760-796. https://doi.org/10.3390/s7050760
18. Guo Z.J., McGruer N.E., & Adams G.G. (2007). Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. Journal of Micromechanics and Microengineering,17(9), 1899. Guo Z.J., McGruer N.E., Adams G.G. Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch // Journal of Micromechanics and Microengineering. – 2007. – Ò. 17. – ¹. 9. – Ñ. 1899-1909. https://doi.org/10.1088/0960-1317/17/9/019
19. De Pasquale G., Somà A. Dynamic identification of electrostatically actuated MEMS in the frequency domain // Mechanical systems and signal processing. – 2010. – Ò. 24. – ¹. 6. – Ñ. 1621-1633. https://doi.org/10.1016/j.ymssp.2010.01.010
20. Alsaleem F.M., Younis M.I., Ruzziconi L. An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically // Journal of Microelectromechanical systems. – 2010. – Ò. 19. – ¹. 4. – Ñ. 794-806. https://doi.org/10.1109/JMEMS.2010.2047846
21. Wang B., Zhou S., Zhao J., Chen X. Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS // Journal of Micromechanics and microengineering. – 2011. – Ò. 21. – ¹. 2. – Ñ. 027001. https://doi.org/10.1088/0960-1317/21/2/027001
22. Zhang W.M., Tabata O., Tsuchiya T., Meng G. Noise-induced chaos in the electrostatically actuated MEMS resonators // Physics Letters A. – 2011. – Ò. 375. – ¹. 32. – Ñ. 2903-2910.
23. Ouakad H.M. (2013). An electrostatically actuated MEMS arch band-pass filter. Shock and Vibration, 20(4), 809-819. https://doi.org/10.1016/j.physleta.2011.06.020
24. Caruntu D.I., Martinez I. Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators // International Journal of Non-Linear Mechanics. – 2014. – Ò. 66. – Ñ. 28-32. https://doi.org/10.1016/j.ijnonlinmec.2014.02.007
25. Ramini A.H., Hennawi Q.M., Younis M.I. Theoretical and experimental investigation of the nonlinear behavior of an electrostatically actuated in-plane MEMS arch // Journal of Microelectromechanical Systems. – 2016. – Ò. 25. – ¹. 3. – Ñ. 570-578. https://doi.org/10.1109/JMEMS.2016.2554659
26. Cass S. MEMS in space // IEEE Spectrum. – 2001. – Ò. 38. – ¹. 7. – Ñ. 56-61. https://doi.org/10.1109/6.931884
27. George T. MEMS/NEMS development for space applications at NASA/JPL // Proc. SPIE. – 2002. – Ò. 4755. – Ñ. 556-567. https://doi.org/10.1117/12.462856
28. Lafontan X., Pressecq F., Beaudoin F., Rigo S., Dardalhon M., Roux J.L., Schmitt P., Kuchenbecker J., Baradat B., Lellouchi D., Le-Touze C. The advent of MEMS in space // Microelectronics Reliability. – 2003. – Ò. 43. – ¹. 7. – Ñ. 1061-1083. https://doi.org/10.1016/S0026-2714(03)00120-3
29. Farrar D., Schneider W., Osiander R., Champion J.L., Darrin A.G., Douglas D., Swanson T.D. Controlling micro electromechanical systems (mems) in space // AIP Conference Proceedings. – 2003. – Ò. 654. – ¹. 1. – Ñ. 180-186. https://doi.org/10.1063/1.1541293
30. George T. Overview of MEMS/NEMS technology development for space applications at NASA/JPL // Proc. SPIE. – 2003. – Ò. 5116. – Ñ. 136-148. https://doi.org/10.1117/12.497796
31. Rigaud S., Quadri G., Gilard O., Nicot J.M. Optical MEMS reliability in space environment // Proc. SPIE. – 2006. – Ò. 6186. – Ñ. 221-232. https://doi.org/10.1117/12.661458
32. Shea H.R. Reliability of MEMS for space applications // Proc. SPIE. – 2006. – Ò. 6111. – Ñ. 84-93. https://doi.org/10.1117/12.651008
33. Grönland T.A., Rangsten P., Nese M., Lang M. Miniaturization of components and systems for space using MEMS-technology // Acta Astronautica. – 2007. – Ò. 61. – ¹. 1-6. – Ñ. 228-233. https://doi.org/10.1016/j.actaastro.2007.01.029
34. Jeong S.M., Nam S.U., Park I.H., Park J.H., Lee J. Lee C.H. Telescope with using MEMS mirror for detecting Gamma Ray burst // The Bulletin of The Korean Astronomical Society. – 2008. – Ò. 33. – ¹. 1. – Ñ. 44.2-44.2.
35. Park I.H. MEMS based space telescope for extreme energy cosmic rays experiments // Nuclear Physics B-Proceedings Supplements. – 2004. – Ò. 134. – Ñ. 196-201. https://doi.org/10.1016/j.nuclphysbps.2004.08.031
36. Gradov O.V., Gradova M.A., Maklakova I.A., Kholuiskaya S.N. Towards Electron-Beam-Driven Soft / Polymer Fiber Microrobotics for Vacuum Conditions // Materials Research Proceedings. – 2022. – T. 21. – C. 370-383. https://doi.org/10.21741/9781644901755-64
37. Ford H.C., Clampin M., Illingworth G.D., Krist J.E., Olivier S.S., Petro L., Sommagren G.E. Requirements for an optical 8-m space telescope with a MEMs deformable mirror to detect Earth-like planets around nearby stars // Proc. SPIE. – 2003. – Ò. 4854. – Ñ. 554-557. https://doi.org/10.1117/12.460052
38. Park I.H., Artikova S., Kim J.E., Jeon J.A., Jeong S., Jung A., Lee H.Y., Lee J., Na G., Nam S., Oh S. MEMS Space Telescope Obscura: Pathfinder of Future Space Missions // The Bulletin of The Korean Astronomical Society. – 2007. – Ò. 32. – ¹. 2. – Ñ. 21.
39. Agrawal B., Kubby J. Applications of MEMS in segmented mirror space telescopes // Proc. SPIE. – 2011. – Ò. 7931. – Ñ. 9-25. https://doi.org/10.1117/12.876503
40. Miyamura N. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope // Proc. SPIE. – 2017. – Ò. 10410. – Ñ. 8-17. https://doi.org/10.1117/12.2273868
41. Li M.J., Adachi T., Allen C., Babu S., Bajikar S., Beamesderfer M., Bradley R., Denis K., Costen N., Ewin A., Franz D., Hess L., Hu R., Jackson K.M., Jhabvala M., Kelly D., King T., Kletetschka G., Kutyrev A., Lynch B., Miller T., Moseley H., Mikula V., Mott B., Oh L., Pontius J.T., Rapchun D., Ray C., Schulte E., Schwinger S., Shu P., Silverberg R., Smith W., Snodgrass S., Sohl D., Sparr L., Steptoe-Jackson R., Veronica V., Wang L., Zheng Y., Zincke C. MEMS microshutter arrays for James Webb Space Telescope // Proc. SPIE. – 2006. – Ò. 6415. – Ñ. 77-90. https://doi.org/10.1117/12.706308
42. Chen S., Sivanandam S., Moon D.S. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope // Proc. SPIE. – 2016. – Ò. 9908. – Ñ. 2239-2249. https://doi.org/10.1117/12.2230694
43. Marinaro D.G., McMahon P., Wilson A. Proton radiation effects on MEMS silicon strain gauges // IEEE Transactions on Nuclear Science. – 2008. – Ò. 55. – ¹. 3. – Ñ. 1714-1718. https://doi.org/10.1109/TNS.2008.921933
44. Gomes J., Shea H.R. Displacement damage effects in silicon MEMS at high proton doses // Proc. SPIE. – 2011. – Ò. 7928. – Ñ. 126-135. https://doi.org/10.1117/12.873546
45. Bandi T., Polido-Gomes J., Neels A., Dommann A., Shea H.R. Making MEMS more suited for Space: Assessing the proton-radiation tolerance of structural materials for microsystems in orbit // Proc. SPIE. – 2013. – Ò. 8614. – Ñ. 170-179. https://doi.org/10.1117/12.2004705
46. Patton S.T., Frasca A.J., Talnagi J.W., Hyman D.J., Phillips B.S., Jones J.G., Vaia R.A., Voevodin A.A.. Effect of space radiation on the leakage current of MEMS insulators // IEEE transactions on nuclear science. – 2013. – Ò. 60. – ¹. 4. – Ñ. 3074-3083. https://doi.org/10.1109/TNS.2013.2263840
47. Sallese J.M., Bouvet D. Principles of space-charge based bi-stable MEMS: The junction-MEMS // Sensors and Actuators A: Physical. – 2007. – Ò. 133. – ¹. 1. – Ñ. 173-179. https://doi.org/10.1016/j.sna.2006.03.024
48. Sawant A., Antonuk L.E., El-Mohri Y., Li Y., Su Z., Wang Y., Yamamoto J., Zhao Q., Du H., Daniel J., Street, R. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage X-ray imaging // Medical physics. – 2005. – Ò. 32. – ¹. 2. – Ñ. 553-565. https://doi.org/10.1118/1.1854774
49. Riveros R.E., Yamaguchi H., Mitsuishi I., Takagi U., Ezoe Y., Kato F., Sugiyama S., Yamasaki N., Mitsuda K. Magnetic field assisted finishing of ultra-lightweight and high-resolution MEMS X-ray micro-pore optics // Proc. SPIE. – 2009. – Ò. 7360. – Ñ. 315-322. https://doi.org/10.1117/12.823961
50. Mitsuishi I., Ezoe Y., Ishizu K., Moriyama T., Mita M., Yamasaki N.Y., Mitsuda K., Kanamori Y., Morishita K., Nakajima K. Novel ultra-lightweight and high-resolution MEMS X-ray optics for space astronomy // Sensors and Actuators A: Physical. – 2012. – Ò. 188. – Ñ. 411-416. https://doi.org/10.1016/j.sna.2012.02.042
51. Walko D.A., Jung I.W., Lopez D., Mukhopadhyay D., Schwartz C.P., Shenoy G.K., Wang J. Temporal modulation of synchrotron X-rays using torsional MEMS mirrors // Proc. SPIE. – 2012. – Ò. 8502. – Ñ. 111-116. https://doi.org/10.1117/12.930057
52. Ishikawa K., Ezoe Y., Numazawa M., Ogawa T., Sato M., Nakamura K., Ohashi T., Mitsuda K., Maeda R., Hiroshima H., Kurashima Y. 12-inch X-ray optics based on MEMS process // Microsystem Technologies. – 2017. – Ò. 23. – Ñ. 2815-2821. https://doi.org/10.1007/s00542-016-2980-6
53. Gilles J.P., Megherbi S., Raynaud G., Parrain F., Mathias H., Leroux X., Bosseboeuf A. Scanning electron microscopy for vacuum quality factor measurement of small-size MEMS resonators // Sensors and Actuators A: Physical. – 2008. – Ò. 145. – Ñ. 187-193. https://doi.org/10.1016/j.sna.2007.11.026
54. Zhang C., Zhao H., Xu S., Chen N., Li K., Jiang X., Liu L., Liu Z., Wang L., Wong K.K., Zou J. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror // Optics Letters. – 2020. – Ò. 45. – ¹. 15. – Ñ. 4312-4315. https://doi.org/10.1364/ol.397733
55. Szentesi O.I. Stroboscopic electron mirror microscopy at frequencies up to 100 MHz // Journal of Physics E: Scientific Instruments. – 1972. – Ò. 5. – ¹. 6. – Ñ. 563-567. https://doi.org/10.1088/0022-3735/5/6/024
56. Qiu J., Ha G., Jing C., Baryshev S.V., Reed B.W., Lau J.W., Zhu Y. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method // Ultramicroscopy. – 2016. – Ò. 161. – Ñ. 130-136. https://doi.org/10.1016/j.ultramic.2015.11.006
57. Jing C., Zhu Y., Liu A., Schliep K., Fu X., Zhao Y., Montgomery E., Rush W., Kanareykin A., Katz M., Lau J. Tunable electron beam pulser for picoseconds stroboscopic microscopy in transmission electron microscopes // Ultramicroscopy. – 2019. – Ò. 207. – Ñ. 112829. https://doi.org/10.1016/j.ultramic.2019.112829
58. Bostanjoglo O., Rosin T. Ultrasonically induced magnetic reversals observed by stroboscopic electron microscopy // Optica Acta: International Journal of Optics. – 1977. – Ò. 24. – ¹. 6. – Ñ. 657-664. https://doi.org/10.1080/713819603
59. Schliep K.B., Katz M.B., & Lau J.W. (2018). A RF Broadband Biasing Holder for Ultrafast Stroboscopic Electron Microscopy. Microscopy and Microanalysis, 24(S1), 1852-1853. Schliep K.B., Katz M.B., Lau J.W. A RF Broadband Biasing Holder for Ultrafast Stroboscopic Electron Microscopy // Microscopy and Microanalysis. – 2018. – Ò. 24. – ¹. S1. – Ñ. 1852-1853. https://doi.org/10.1017/S1431927618009741
60. Vinoy K.J., Varadan V.K. Design of reconfigurable fractalantennas and RF-MEMS for space-based systems // Smart materials and structures. – 2001. – Ò. 10. – ¹. 6. – Ñ. 1211-1223.
61. Di Nardo S., Farinelli P., Kim T., Marcelli R., Margesin B., Paola E., Pochesci D., Vietzorreck L., Vitulli F. Design of RF MEMS based switch matrix for space applications // Advances in Radio Science. – 2013. – Ò. 11. – ¹. C. 7. – Ñ. 143-152. https://doi.org/10.5194/ars-11-143-2013
62. Lucibello A., Marcelli R., Proietti E., Bartolucci G., Mulloni V., Margesin B. Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations // Microsystem Technologies. – 2015. – Ò. 21. – Ñ. 1903-1913. https://doi.org/10.1007/s00542-014-2124-9
63. Savin E.A., Kirtaev R.V., Zhukov A.A., Didyk P.I. Design of a packaging-friendly double-topology RF MEMS switch for space applications // Microsystem Technologies. – 2019. – Ò. 25. – ¹. 1. – Ñ. 51-55. https://doi.org/10.1007/s00542-018-3929-8
64. Singh H., Malhotra J. RF-MEMS-Based DPDT Switch on Silicon Substrate for Ku-Band Space-Borne Applications // Transactions on Electrical and Electronic Materials. – 2017. – Ò. 18. – ¹. 1. – Ñ. 16-20. https://doi.org/10.4313/TEEM.2017.18.1.16
65. Hafiane A., Petitgrand S., Gigan O., Bouchafa S., Bosseboeuf A. Study of subpixel image processing algorithms for MEMS in-plane vibration measurements by stroboscopic microscopy // Proc. SPIE. – 2003. – Ò. 5145. – Ñ. 169-179. https://doi.org/10.1117/12.500141
66. van Zeijl H.W., Simon K., Slabbekoorn J.H.C.M., Buel W.V., Gui C.Q. Waferstepper Alignment for MEMS Applications using Diffraction Gratings // MRS Online Proceedings Library. – 2002. – Ò. 729. – ¹. 1. – Ñ. 58. https://doi.org/10.1557/PROC-729-U5.8
67. Day D.R. Multichannel gain equalizer MEMs surface topology effects on chromatic dispersion: a comparison of scalar diffraction modeling to actual product // Proc. SPIE. – 2004. – Ò. 5577. – Ñ. 609-620. https://doi.org/10.1117/12.567485
68. Kim B., Schmittdiel M.C., Degertekin F.L., Kurfess T.R. Actively controlled diffraction grating interferometer MEMS devices // Proc. SPIE. – 2005. – Ò. 5721. – Ñ. 151-158. https://doi.org/10.1117/12.592215
69. Bicen B., Garcia C., Hall N.A., Okandan M., Cui W., Su Q.T., Miles R.N., Degertekin L. Diffraction based optical MEMS microphones and accelerometers with active electrostatic force feedback // The Journal of the Acoustical Society of America. – 2008. – Ò. 123. – ¹. 5_Supplement. – Ñ. 3230. https://doi.org/10.1121/1.2933456
70. Grabarnik S., Emadi A., Wu H., De Graaf G., Vdovin G., Wolffenbuttel R.F. Fabrication of an imaging diffraction grating for use in a MEMS-based optical microspectrograph // Journal of Micromechanics and Microengineering. – 2008. – Ò. 18. – ¹. 6. – Ñ. 064006. https://doi.org/10.1088/0960-1317/18/6/064006
71. Degertekin L., Jeelani K., Qureshi S., Hasler P., Bicen B., Cui W., Su Q.T., Miles R.N. Miniature diffraction‐based optical MEMS microphones with integrated optoelectronics // The Journal of the Acoustical Society of America. – 2008. – Ò. 123. – ¹. 5_Supplement. – Ñ. 3229. https://doi.org/10.1121/1.2933454
72. Yu Y.T., Yuan W.Z., Qiao D.Y., Yan B. A simple numerical method to study the far-field diffraction of optical MEMS devices with a large array and complex element geometry // Sensors and Actuators A: Physical. – 2010. – Ò. 158. – ¹. 1. – Ñ. 30-36. https://doi.org/10.1016/j.sna.2009.12.032
73. Shtyrkova K., Arguello L., Oesch D., Sanchez D.J., Kelly P., Tewksbury-Christle C., Smith J. Experimental analysis of diffraction effects from a segmented MEMS deformable mirror for a closed loop adaptive optics system // Proc. SPIE. – 2010. – Ò. 7816. – Ñ. 87-100. https://doi.org/10.1117/12.861544
74. Zhou G., Du Y., Cheo K.K., Chau F.S. MEMS-driven diffraction gratings for rapid scanning of laser beams with very high optical resolution // Proc. SPIE. – 2011. – Ò. 8191. – Ñ. 35-44. https://doi.org/10.1117/12.901076
75. Zamkotsian F., Timotijevic B., Lockhart R., Stanley R.P., Lanzoni P., Luetzelschwab M., Canonica M., Noell W., Tormen M. Optical characterization of fully programmable MEMS diffraction gratings // Optics Express. – 2012. – Ò. 20. – ¹. 23. – Ñ. 25267-25274. https://doi.org/10.1364/OE.20.025267
76. Suresh V.G., DasGupta N., Bhattacharya S. Tunable MEMS diffraction gratings // Proc. SPIE. – 2012. – Ò. 8549. – Ñ. 252-257. https://doi.org/10.1117/12.925113
77. Long H., Xi S., Liu D., Shi T., Xia Q., Liu S., Tang Z. Tailoring diffraction-induced light distribution toward controllable fabrication of suspended C-MEMS // Optics Express. – 2012. – Ò. 20. – ¹. 15. – Ñ. 17126-17135. https://doi.org/10.1364/OE.20.017126
78. Gloor S., Bachmann A.H., Epitaux M., von Niederhäusern T., Vorreau P., Matuschek N., Hsu K., Duelk M., Vélez C. High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings // Proc. SPIE. – 2013. – Ò. 8571. – Ñ. 283-289. https://doi.org/10.1117/12.2007106
79. Wang C., Lu Q., Bai J., Yang G., Wang K., Liu D., Yang Y. Highly sensitive lateral deformable optical MEMS displacement sensor: Anomalous diffraction studied by rigorous coupled-wave analysis // Applied Optics. – 2015. – Ò. 54. – ¹. 30. – Ñ. 8935-8943. https://doi.org/10.1364/AO.54.008935
80. Reitterer J., Fidler F., Schmid G., Hambeck C., Saint Julien-Wallsee F., Leeb W., Schmid U. Beam-clipping-induced diffraction effects in MEMS laser scanners for autostereoscopic outdoor displays // Sensors and Actuators A: Physical. – 2015. – Ò. 233. – Ñ. 582-589. https://doi.org/10.1016/j.sna.2015.06.024
81. Blanche P.A., LaComb L., Wang Y., Wu M.C. Diffraction-based optical switching with MEMS // Applied Sciences. – 2017. – Ò. 7. – ¹. 4. – Ñ. 411. https://doi.org/10.3390/app7040411
82. Suzuki Y., Tezuka S. Numerical simulation of 3D Fox–Li integral equation described by Rayleigh–Sommerfeld diffraction for MEMS-VCSEL // Optical Review. – 2019. – Ò. 26. – Ñ. 430-435. https://doi.org/10.1007/s10043-019-00551-1
83. Han S., Ishfaque A., Phamduy P., Kim B. Effect of squeeze air film damping on diffraction grating based bio-inspired MEMS directional microphone // Microsystem Technologies. – 2020. – Ò. 26. – Ñ. 1203-1212. https://doi.org/10.1007/s00542-019-04650-6
84. Ketchum R.S., Blanche P.A. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution // Photonics. – 2021. – Ò. 8. – ¹. 3. – Ñ. 62. https://doi.org/10.3390/photonics8030062
85. Apollonova I.A., Spiridonov I.N. Application of a optical Fourier processor for dermatoglyphical diagnostics // Proc. SPIE. – 1994. – Ò. 2051. – Ñ. 566-571. https://doi.org/10.1117/12.165929
86. Grudin B.N., Plotnikov V.S., Smol’yaninov N.A. Modeling images with specified fractal characteristics // Optoelectronics, Instrumentation and Data Processing. – 2010. – Ò. 46. – Ñ. 215-221. https://doi.org/10.3103/S8756699010030027
87. Grudin B.N., Plotnikov V.S., Smol’yaninov N.A., Polishchuk S.V. Simulation and reconstruction of nanosructure images in amorphous alloys // Bulletin of the Russian Academy of Sciences: Physics. – 2011. – Ò. 75. – Ñ. 1200-1204. https://doi.org/10.3103/S1062873811090097
88. Kraynova G.S., Frolov A.M., Pisarenko T.A. Fractal ordering nanostructured planar media // Advanced Materials Research. – 2013. – Ò. 718. – Ñ. 85-90. https://doi.org/10.4028/www.scientific.net/AMR.718-720.85
89. Tkachev V.V., Kraynova G.S., Polyansky D.A., Plotnikov V.S., Dubinets A.V. Surface irregularities and magnetism in amorphous metal foils on Fe basis // Solid State Phenomena. – 2016. – Ò. 245. – Ñ. 223-229. https://doi.org/10.4028/www.scientific.net/SSP.245.223
90. Frolov A.M., Ansovich A.V., Tkachev V.V., Kraynova G.S., Dolzhikov S.V. Surface morphology of spinning tapes Fe-(Cu, Nb)-(Si, B) with different content of metalloid // Key Engineering Materials. – 2019. – Ò. 806. – Ñ. 124-129. https://doi.org/10.4028/www.scientific.net/KEM.806.124
91. Gradov O.V. Korrelyatsionno-spektral'nyi analiz kak metod kvalimetrii materialov i gornogo syr'ya: klyuchevye deskriptory struktury, integral'nye chastotnye i prostranstvennye kharakteristiki i ikh dinamika // Innovatsii i perspektivy razvitiya gornogo mashinostroeniya i ehlektromekhaniki. – 2021. – S. 337-340.
92. Pustovalov E.V., Voitenko O.V., Grudin B.N., Plotnikov V.S. Graphics processors in problems of electron tomography // Optoelectronics, Instrumentation and Data Processing. – 2012. – Ò. 48. – Ñ. 62-68. https://doi.org/10.3103/S8756699012010098
93. Sheromova I.A., Starkova G.P., Starkov S.V. Methods for the Structural Analysis of Highly Elastic Materials // IOP Conference Series: Earth and Environmental Science. – 2020. – Ò. 459. – ¹. 6. – Ñ. 062101. https://doi.org/10.1088/1755-1315/459/6/062101
94. Gorshenev V.N., Gradov O.V., Gradova M.A. Differentsial'naya orientatsionnaya otsenka strukturnykh biomimeticheskikh svoistv poristykh tkaneinzhenernykh konstruktsii s ispol'zovaniem sistem korrelyatsionnospektral'nogo analiza real'nogo vremeni i matematicheskogo apparata teorii morfizmov i (ili) teorii kategorii // Geny i Kletki. – 2019. – T. 14. – ¹. SUPPL. – Ñ. 68-69.http://dx.doi.org/10.23868/gc122415
95. Orekhov T.K., Gradov O.V. From desolvation-induced self-organization on the MALDI anchor target chip surfaces to laser-induced self-organization in MALDI techniques: Correlation-spectral analysis and complex wavelet analysis of tesiographic spots on the anchor chips // Materials Technology Reports. – 2023. – Ò. 1. – ¹. 1. – Ñ. 124. https://doi.org/10.59400/mtr.v1i1.124
96. Gradov O.V. Spectrozonal and multispectral raster lens-less microscopy of aquatic organisms: Towards new contact optical methods of environmental biotesting using standard model organisms in variable environments // Proc. SPIE. – 2024. – Ò. 13279. – Ñ. 499-505. https://doi.org/10.1117/12.3041302
97. Biryukov V.P., Prince A.N., Maklakova I.A., Gradov O.V. Metallographic DPSSL-assisted lens-less microscopy of Si-Al systems using a multiangle planar analyzer based on a polarizing microscope rotating table and a digital image correlator/2D FFT spectrometer // Proc. SPIE. – 2024. – Ò. 13279. – Ñ. 561-567. https://doi.org/10.1117/12.3041314
98. Gradov O.V., Yablokov A.G., Skrynnik A.A. Periodimetr-regulometr dlya kineticheskogo analiza simvol'nykh registrogramm korrelyatsionnoi stroboskopicheskoi ehlektronnoi mikroskopii i dannykh mikrozondovogo khimicheskogo kartirovaniya // Fundamental'nye problemy radioehlektronnogo priborostroeniya. – 2017. – T. 17. – ¹. 3. – Ñ. 769-772.
99. Gradov O.V., Aleksandrov P.L., Gradova M.A. Issledovanie obraztsov relevantnykh dlya pustynnykh mestonakhozhdenii mineralov metodami programmnogo korrelyatsionno-spektral'nogo analiza registrogramm skaniruyushchei ehlektronnoi mikroskopii: ot 2D-Fur'e-spektrov do on-lain-analiza statistiki integral'nykh prostranstvennykh kharakteristik // Programmnye sistemy i vychislitel'nye metody. – 2019. – ¹. 4. – Ñ. 125-171. https://doi.org/10.7256/2454-0714.2019.4.31379
100. Gradov O.V. Kriokonveiernye protokoly v korrelyatsionnoi svetovoi i ehlektronnoi mikroskopii: ot mnogourovnevoi vizualizatsii do modelirovaniya biofizicheskikh ehffektov i «krioteranostikI» // Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. – 2023. – T. 78. – ¹. 3S. – Ñ. 57-62. https://doi.org/10.55959/MSU0137-0952-16-78-3S-10
101. Gradov O.V. Cryoconveyor Protocols in Correlative Light and Electron Microscopy: From Multilevel Imaging to Modeling the Biophysical Effects and “Cryotheranostics” // Moscow University Biological Sciences Bulletin. – 2023. – Ò. 78. – ¹. Suppl 1. – Ñ. S64-S68. https://doi.org/10.3103/S0096392523700244
102. Fishchenko V.K., Dolgikh G.I., Zimin P.S., Subote A.E. Some results of oceanological video monitoring // Doklady Earth Sciences. –2018. – Ò. 482. – Ñ. 1244-1247. https://doi.org/10.1134/S1028334X18090283
103. Fishchenko V.K., Zimin P.S., Zatserkovnyi A.V., Goncharova A.A., Suboteh A.E., Golik A.V. Statsionarnye sistemy podvodnogo videonablyudeniya: vozmozhnosti primeneniya dlya monitoringa bioty pribrezhnykh akvatorii zaliva Petra Velikogo (Yaponskoe more) // Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk. – 2018. – ¹. 1 (197). – Ñ. 149-160.
104. Fischenko V.K., Goncharova A.A., Dolgikh G.I., Zimin P.S., Subote A.E., Klescheva N.A., Golik A.V. Express image and video analysis technology QAVIS: application in system for video monitoring of Peter the Great Bay (Sea of Japan/East Sea) // Journal of Marine Science and Engineering. – 2021. – Ò. 9. – ¹. 10. – Ñ. 1073. https://doi.org/10.3390/jmse9101073
105. Dolgikh G.I., Fishchenko V.K., Goncharova A.A. O vozmozhnosti registratsii volneniya i kolebanii urovnya morya v pribrezhnykh raionakh Mirovogo okeana na osnove analiza video v seti Internet // Doklady Akademii nauk. – 2019. – T. 488. – ¹6. – C. 667-672. https://doi.org/10.31857/S0869-56524886667-672
106. Fishchenko V.K., Goncharova A.A., Zimin P.S. Primenenie sistem statsionarnogo podvodnogo videonablyudeniya dlya otsenivaniya parametrov volneniya i techenii // Tekhnicheskie problemy osvoeniya Mirovogo okeana. – 2019. – ¹. 8. – Ñ. 230-237.
107. Dolgikh G.I., Fishchenko V.K., Goncharova A.A. O vozmozhnosti registratsii volneniya i kolebanii urovnya morya v pribrezhnykh raionakh Mirovogo okeana na osnove analiza video v seti Internet // Doklady Akademii nauk. – 2019. – T. 488. – ¹. 6. – Ñ. 667-672.
108. Dolgikh G.I., Fishchenko V.K., Goncharova A.A. Potential for recording of waves and sea level fluctuations in the world ocean coastal areas by internet video analysis // Doklady Earth Sciences. – 2019. – Ò. 488. – Ñ. 1264-1267. https://doi.org/10.1134/S1028334X19100209
109. Zimin P.S., Fishchenko V.K., Suboteh A.E., Zatserkovnyi A.V., Golik A.V. Razrabotka i aprobatsiya v bukhte Alekseeva (o. Popova) tekhnologii registratsii volneniya i kolebanii urovnya morya s ispol'zovaniem videovolnomerov // Fizika geosfer. – 2019. – ¹ 11. – Ñ. 53-64. https://doi.org/10.35976/POI.2019.25.50.005
110. Fishchenko V.K., Zimin P.S., Golik A.V., Goncharova A.A. Ispol'zovanie sistem statsionarnogo podvodnogo videonablyudeniya dlya otsenivaniya parametrov podvodnykh techenii i morskogo volneniya // Podvodnye issledovaniya i robototekhnika. – 2020. – ¹. 2. – Ñ. 62-73. https://doi.org/10.37102/24094609.2020.32.2.008
111. Goncharova A.A., Fishchenko V.K., Dubina V.A. Primenenie programmy ehkspress-analiza izobrazhenii i video QAVIS v zadachakh sputnikovogo monitoringa // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. – 2012. – T. 9. – ¹. 3. – Ñ. 293-298.
112. Mitnik L.M., Kuzlyakina YU.A. Ledyanoi pokrov zaliva Petra Velikogo na izobrazheniyakh RSA PALSAR so sputnika ALOS // Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk. – 2013. – ¹. 6 (172). – Ñ. 50-58.
113. Adamovich E.D., Gradov O.V., Nasirov F.A. Zhidkometallicheskaya mikroflyuidika s morfometricheskim korrelyatsiionno-spektral'nym kontrolem sredy: ot zhidkometallicheskoi antenny do radiochastotnoi ostsillopolyarografii // Fundamental'nye problemy radioehlektronnogo priborostroeniya. – 2018. – T. 18, ¹ 3. – Ñ. 650–653. http://dx.doi.org/10.13140/RG.2.2.33474.63682
114. Gradov O.V., Nasirov F.A., Yablokov A.G. Bezlinzovaya gemotsitometriya na chipe so vtorichnym preobrazovaniem signalov / izobrazhenii kletok v ramkakh nekanonicheskoi fotometricheskoi modeli // Fotonika. – 2018. – T. 12. – ¹ 7. – Ñ. 716–729. https://doi.org/10.22184/1993-7296.2018.12.7.716.729
115. Knick C.R., Morris C.J. Material and process development of thin film shape memory alloy for MEMS actuator // Proc. ASME (American Society of Mechanical Engineers). – 2015. – Ò. 57298. – Ñ. V001T01A001. https://doi.org/10.1115/SMASIS2015-8801
116. Choudhary N., Kaur D. Shape memory alloy thin films and heterostructures for MEMS applications: A review // Sensors and Actuators A: Physical. – 2016. – Ò. 242. – Ñ. 162-181. https://doi.org/10.1016/j.sna.2016.02.026
117. Zorman C.A., Mehregany M., Kahn H., Heuer A.H. New developments in MEMS using SiC and TiNi shape memory alloy materials // Current Opinion in Solid State and Materials Science. – 1997. – Ò. 2. – ¹. 5. – Ñ. 566-570. https://doi.org/10.1016/S1359-0286(97)80046-0
118. Kahn H., Huff M.A., Heuer A.H. The TiNi shape-memory alloy and its applications for MEMS // Journal of Micromechanics and Microengineering. – 1998. – Ò. 8. – ¹. 3. – Ñ. 213-221. 10.1088/0960-1317/8/3/007
119. Gill J.J., Ho K., Carman G.P. The Fabrication of Thin Film NiTi Shape Memory Alloy Micro Actuator for MEMS Application // Proc. ASME (American Society of Mechanical Engineers). – 1999. – Ò. 16424. – Ñ. 125-131. https://doi.org/10.1115/IMECE1999-0536
120. Fu Y., Du H., Huang W., Huang X., Miao J., Liu Y. Preparation of crystalline TiNi shape-memory alloy thin film for MEMS applications // Proc. SPIE. – 2000. – Ò. 4230. – Ñ. 140-146. https://doi.org/10.1117/12.404895
121. Fu Y., Huang W., Du H., Huang X., Tan J., Gao X. Characterization of TiNi shape-memory alloy thin films for MEMS applications // Surface and Coatings Technology. – 2001. – Ò. 145. – ¹. 1-3. – Ñ. 107-112. https://doi.org/10.1016/S0257-8972(01)01324-X
122. Du H., Fu Y. Characterization and MEMS application of sputtered TiNi shape memory alloy thin films // Proc. SPIE. – 2001. – Ò. 4601. – Ñ. 138-146. https://doi.org/10.1117/12.444686
123. Fu Y., Du H. Magnetron sputtered TiNiCu shape memory alloy thin film for MEMS applications // Microsystems. – Ò. 9. – 2002. – Ñ. 77-96. https://doi.org/10.1007/978-1-4757-5791-0_4
124. Lai B.K., Kahn H., Phillips S.M., Heuer A.H. A comparison of PZT-based and TiNi shape memory alloy-based MEMS microactuators // Ferroelectrics. – 2004. – Ò. 306. – ¹. 1. – Ñ. 221-226. https://doi.org/10.1080/00150190490460867
125. Namazu T., Tashiro Y., Inoue S. Ti–Ni shape memory alloy film-actuated microstructures for a MEMS probe card // Journal of Micromechanics and Microengineering. – 2006. – Ò. 17. – ¹. 1. – Ñ. 154. 10.1088/0960-1317/17/1/020
126. Namazu T., Hashizume A., Inoue S. Thermomechanical tensile characterization of Ti–Ni shape memory alloy films for design of MEMS actuator // Sensors and Actuators A: Physical. – 2007. – Ò. 139. – ¹. 1-2. – Ñ. 178-186. https://doi.org/10.1016/j.sna.2006.10.047
127. Casati R., Vedani M., Tofail S.A., Dikinson C., Tuissi A. On the preparation and characterization of thin NiTi shape memory alloy wires for MEMS // Fracture and Structural Integrity. – 2013. – Ò. 7. – ¹. 23. – Ñ. 7-12. https://doi.org/10.3221/IGF-ESIS.23.01
128. Knick C.R., Smith G.L., Morris C.J., Bruck H.A. Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators // Sensors and Actuators A: Physical. – 2019. – Ò. 291. – Ñ. 48-57. https://doi.org/10.1016/j.sna.2019.03.016
129. Ôîíãðàòîâñêè Ñ.Â., Êîëåäîâ Â.Â., Îðëîâ À.Ï., Ôðîëî À.Â., Ñìîëîâè÷ À.Ì., Ëåãà Ï.Â., Øàâðîâ Â.Ã., Ôàì Â.×., Èðæàê À.Â., Ïåêèçåõ Ò. Áõàò÷àòàððèÿ Ñ., Ñîçäàíèå êîëüöåâûõ è ïåòëåâûõ ïîäâåøåííûõ ñòðóêòóð íà îñíîâå íàíîïðîâîëîê ìåòîäîì ìåõàíè÷åñêîé íàíîñáîðêè» ñíèçó-ââåðõ» // Æóðíàë ðàäèîýëåêòðîíèêè. – 2019. – ¹. 2. – Ñ. 1-9. 10.30898/1684-1719.2019.2.14
130. Varadan V.K., Varadan V.V., Motojima S. Three-dimensional polymeric and ceramic MEMS and their applications // Proc. SPIE. – 1996. – Ò. 2722. – Ñ. 156-164. https://doi.org/10.1117/12.240440
131. Hossfeld J., Paatzsch T., Schulze J., Neumeier M., Weber L., Bauer H.D., Ehrfeld W. Polymeric optical MEMS // Proc. SPIE. – SPIE, 1999. – Ò. 3680. – Ñ. 637-645. https://doi.org/10.1117/12.341256
132. Ruben K.A., Flaim T.D., Li C. Polymeric protective coatings for MEMS wet-etch processes // Proc. SPIE. – SPIE, 2003. – Ò. 5342. – Ñ. 212-220. https://doi.org/10.1117/12.523965
133. Su Y.C., Lin L. Localized bonding processes for assembly and packaging of polymeric MEMS // IEEE Transactions on advanced packaging. – 2005. – Ò. 28. – ¹. 4. – Ñ. 635-642. https://doi.org/10.1109/TADVP.2005.858333
134. Bachmann D., Kuhne S., Hierold C. Fabrication process of polymeric springs for MEMS applications // The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. – IEEE, 2005. – Ò. 2. – Ñ. 1416-1419. https://doi.org/10.1109/SENSOR.2005.1497347
135. Zhong Z.W., Wang Z.F., Tan Y.H. Chemical mechanical polishing of polymeric materials for MEMS applications // Microelectronics Journal. – 2006. – Ò. 37. – ¹. 4. – Ñ. 295-301. https://doi.org/10.1016/j.mejo.2005.05.016
136. Lang U., Rust P., Dual J. Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges // Microelectronic Engineering. – 2008. – Ò. 85. – ¹. 5-6. – Ñ. 1050-1053. https://doi.org/10.1016/j.mee.2008.01.051
137. Takahashi Y., Teh K.S., Lu Y.W. Fabrication and Characterization of Nano-Structuring Polymeric Surfaces for MEMS Applications // Proc. ASME. – 2008. – Ò. 48746. – Ñ. 209-213. https://doi.org/10.1115/IMECE2008-68893
138. Ozaydin-Ince G., Coclite A.M., Gleason K.K. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes // Reports on Progress in Physics. – 2011. – Ò. 75. – ¹. 1. – Ñ. 016501. https://doi.org/10.1088/0034-4885/75/1/016501
139. Li K.H., Liu L.H., Wang P.C. Fabrication of robust polyaniline thin film electrodes on the surface of elastomeric poly (dimethylsiloxane) for polymeric MEMS applications // 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). – IEEE, 2013. – Ñ. 330-333. https://doi.org/10.1109/IMPACT.2013.6706680
140. Pelegrini M.V., Pereyra I. Study of a-Si1-XCX: H Thin Films Obtained by PECVD in Temperatures Lower than 250º C Aiming Applications in Optics, Thin Films Devices on Polymeric Substrate and MEMS // ECS Transactions. – 2009. – Ò. 23. – ¹. 1. – Ñ. 127. https://doi.org/10.1149/1.3183710
141. Elias A.L., Harris K.D., Bastiaansen C.W., Broer D.J., Brett M.J. Polymeric helices with submicron dimensions for MEMS devices // Proc. SPIE. – 2005. – Ò. 5836. – Ñ. 41-55. https://doi.org/10.1117/12.608584
142. Diemeer M.B. J., Dekker R. Mems VOA with Polymeric Thermal Microactuators // 2002 28TH European Conference on Optical Communication. – IEEE, 2002. – Ò. 3. – Ñ. 1-2.
143. Lago H., Zakaria Z., Jamlos M.F., Soh P.J. A wideband reconfigurable folded planar dipole using MEMS and hybrid polymeric substrates // AEU-International Journal of Electronics and Communications. – 2019. – Ò. 99. – Ñ. 347-353. https://doi.org/10.1016/j.aeue.2018.12.011
144. Bachmann D., Kuhne S., Hierold C. MEMS scanning mirror supported by soft polymeric springs and actuated by electrostatic charge separation // 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). – IEEE, 2007. – Ñ. 723-726. https://doi.org/10.1109/MEMSYS.2007.4433088
145. Rathna K., Haji-Saeed B., Pyburn D., Leon R., Sengupta S.K., Testorf M., Goodhue W., Khoury J., Drehman A., Woods C.L., Kierstead J. Photoconductive Optically Driven MEMS Spatial Light Modulator utilizing a GaAs Substrate and Polymeric Membrane Mirror // Frontiers in Optics. – Optica Publishing Group, 2003. – Ñ. TuV5. https://doi.org/10.1364/FIO.2003.TuV5
146. Demir M.M., Naseer M., Bechteler T.F., Gurbuz Y., Menceloglu Y.Z. Polyurethane nanofiber webs for sensor and actuator applications in microelectromechanical systems (MEMS) // MRS Online Proceedings Library (OPL). – 2003. – Ò. 782. – Ñ. A5. 29.
147. Burianskaya E.L., Gradov O.V., Gradova M.A., Iordanskii A.L., Kochervinskii V.V., Maklakova I.A., Olkhov A.A., Ratnovskaya A.V. Time-resolved estimation of multifractal spectra of ferroelectric/piezoelectric polymer dynamics and neuromimetic fiber orientation: Towards electric-field- and electron-beam-controllable scaffolds and tissue-engineering constructs with dynamic beads // Advanced Structured Materials. – 2025. – Vol. 221. http://dx.doi.org/10.1007/978-3-031-75626-9_6 (in press)
148. Zhang Y., Wesolowski M., Karakatsani A., Witzemann V., Kröger S. Formation of cholinergic synapse-like specializations at developing murine muscle spindles // Developmental biology. – 2014. – Ò. 393. – ¹. 2. – Ñ. 227-235. https://doi.org/10.1016/j.ydbio.2014.07.011
149. Higashida H., Furuya S. Cholinergic synapse formation between NG108-15 and muscle cells and modulation of transmission // Neuroscience Research Supplements. – 1990. – Ò. 13. – Ñ. S75-S79. https://doi.org/10.1016/0921-8696(90)90034-Z
150. Malomouzh A.I., Nikolsky E.E. Modern concepts of cholinergic neurotransmission at the motor synapse // Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. – 2018. – Ò. 12. – Ñ. 209-222. https://doi.org/10.1134/S1990747818030078
151. Singh R.A., Yoon E.S., Kim H.J., Kong H., Jeong H.E., Suh K.Y. Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS // KSTLE International journal. – 2005. – Ò. 6. – ¹. 2. – Ñ. 33-38.
For citation:
Aleksandrov P.L., Buryanskaya E.L., Gradov O.V., Iordansky A.L., Maklakova I.A., Olkhov A.A., Ratnovskaya A.V., Kholuiskaya S.N. Towards the design of electron beam-controlled (optical) fiber microelectromechanical systems based on piezoelectric and ferroelectric polymers and composites // Journal of Radio Electronics. – 2025. – ¹. 8. https://doi.org/10.30898/1684-1719.2025.8.1 (In Russian)