Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹8

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.8.1

 

 

 

TOWARDS THE DESIGN OF ELECTRON BEAM-CONTROLLED

(OPTICAL) FIBER MICROELECTROMECHANICAL SYSTEMS

BASED ON PIEZOELECTRIC AND FERROELECTRIC POLYMERS

AND COMPOSITES

 

Aleksandrov P.L. 1, Buryanskaya E.L. 2,3, Gradov O.V. 4, Iordansky A.L. 4,

Maklakova I.A. 4, Olkhov A.A. 4,5, Ratnovskaya A.V. 5, Kholuiskaya S.N. 4

 

1 Institute of Higher Nervous Activity and Neurophysiology of RAS,

117485, Russia, Moscow, 5A Butlerova Str.

2 Bauman Moscow State Technical University,

105005, Russia. Moscow, 2-nd Baumanskaya Str., 5.

3 National University of Science and Technology MISIS,

119526, Russia, Moscow, Leninsky prospekt, 1/2, bld. 1.

4 N.N. Semenov Federal Research Center for Chemical Physics RAS,

119991, Russia, Moscow, Kosygina str., 4, bld. 1.

5 Emanuel Institute of Biochemical Physics of Russian Academy of Sciences,

119334, Russia, Moscow, Kosygina str., 4.

 

The paper was received April 18, 2025.

 

Abstract. The problem of interaction of microelectromechanical systems and structures with electron and ion beams applied for the tasks of cryovacuum and space electronics and control of space telescopes is posed in the introduction, and the need for modeling the above effects in ground experiments is demonstrated. A technique for modeling the effect of charged particle beams on the polymer ferroelectric and piezoelectric structures, such as the interacting polymer fibers / «fuzzy neuromorphic connectomes» is proposed and implemented based on time-resolved electron microscopy tools with real-time data analysis, up to stroboscopic electron microscopy. In particular, a 2D Fourier transform and subsequent calculation of integral spatial characteristics (ISCs), analysis of the interframe correlations, complex wavelets are used. The experiments demonstrate piezoelectric fiber dynamics of microelectromechanical systems, detected by the change in 2D Fourier spectra of the fiber structures over time under the electron beam. The dynamics of fiber structures and networks with their topology changing under the electron beam is also shown. Time-lapse recording data prove that in some cases such structures can operate as drive (control) electromechanical elements, elastic elements (springs), contactors or locking (blocking) elements. The mechanical fracture of microfibers is also demonstrated. The possibility of coupling several fibers of different thickness and electrophysical properties to achieve complex control over microelectromechanical structures and systems based on them is also shown. The discussion points out the prospects of studying the above structures and systems both within the framework of polymer microelectromechanics or mechatronics, and for creating neuromimetic network structures for sensorics and adaptive motorics, actuated by the charged particle beams (electrons, ions, etc.) and inducing the fiber MEMS dynamics of the «artificial muscle» type, operating based on the principles of teinochemistry and chemomechanics of polymers with field-controlled adaptive «fuzzy» connection formation.

Keywords: microelectromechanical systems, elionics, electron beam processing, focused ion beam (FIB), time-resolved electron microscopy, stroboscopic electron microscopy, real-time FFT, fiber-optic microelectromechanical structures, ferroelectric polymers, piezoelectric polymers, «nanosport».

Financing: FFZE-2022-0009 («New generation polymers and composite materials with specified sets of mechanical and functional properties: synthesis, structure and properties, theory and modeling»).

Corresponding author: Gradov Oleg Valer'evich, gradov.chph.ras@gmail.com

 

References

1. Zhou H., Chong B.K., Stopford P., Mills G., Midha A., Donaldson L., Weaver J.M.R. Lithographically defined nano and micro sensors using “float coating” of resist and electron beam lithography // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. – 2000. – Ò. 18. – ¹. 6. – Ñ. 3594-3599. https://doi.org/10.1116/1.1321271

2. Chase J.G., Smith B.W. Overview of modern lithography techniques and a MEMS-based approach to high throughput rate electron beam lithography // Journal of intelligent material systems and structures. – 2001. – Ò. 12. – ¹. 12. – Ñ. 807-817. https://doi.org/10.1177/104538901400438109

3. Schuhmann T., Protz J., Fields D., Yin H., Cross A., He W., Bowes D., Ronald K. Phelps A. A MEMS fabrication approach for a 200GHz microklystron driven by a small-scaled pseudospark electron beam // Proc. SPIE. – 2010. – Ò. 7837. – Ñ. 42-47. https://doi.org/10.1117/12.864902

4. Singh K., Joyce R., Varghese S., Akhtar J. Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor // Sensors and Actuators A: Physical. – 2015. – Ò. 223. – Ñ. 151-158. https://doi.org/10.1016/j.sna.2014.12.033

5. Bhat S.P., Subhani K.N., Purakkat S. Plasma-assisted electron beam evaporation of low stress aluminium films for MEMS applications // ISSS Journal of Micro and Smart Systems. – 2021. – Ò. 10. – ¹. 1. – Ñ. 33-39. https://doi.org/10.1007/s41683-021-00067-4

6. Chase J.G., Smith B.W. MEMS-based precision motion control approach to high-throughput-rate electron beam lithography // Proc. SPIE. – 2001. – Ò. 4592. – Ñ. 450-461. https://doi.org/10.1117/12.449002

7. Kim H., Han C., Lee K. The Multi Arrayed Micro-scale Electron Optical System for Electron Beam Lithography using MEMS Technology // 電子情報通信学会技術研究報告 = IEICE technical report: 信学技報. – 2002. – Ò. 102. – ¹. 177. – Ñ. 27-31.

8. Grella L., Carroll A., Murray K., McCord M.A., Tong W.M., Brodie A.D., Gubiotti T., Sun F., Kidwingira F., Kojima S., Petric P. Digital pattern generator: an electron-optical MEMS for massively parallel reflective electron beam lithography // Journal of Micro/Nanolithography, MEMS, and MOEMS. – 2013. – Ò. 12. – ¹. 3. – Ñ. 031107-031107. https://doi.org/10.1117/1.JMM.12.3.031107

9. Kojima A., Ikegami N., Yoshida T., Miyaguchi H., Muroyama M., Nishino H., Yoshida S., Sugata M., Ohyi H., Koshida N., Esashi M. Massively parallel electron beam direct writing (MPEBDW) system based on micro-electro-mechanical system (MEMS)/nanocrystalineSi emitter array // Alternative Lithographic Technologies VI. – SPIE, 2014. – Ò. 9049. – Ñ. 240-246.

10. Ichimura T., Ren Y., Kruit P. A large current scanning electron microscope with MEMS-based multi-beam optics // Microelectronic engineering. – 2014. – Ò. 113. – Ñ. 109-113. https://doi.org/10.1016/j.mee.2013.07.008

11. Kojima A., Ikegami N., Yoshida T., Miyaguchi H., Muroyama M., Yoshida S., Totsu K., Koshida N., Esashi M. Development of a MEMS electrostatic condenser lens array for nc-Si surface electron emitters of the Massive Parallel Electron Beam Direct-Write system // Proc. SPIE. – 2016. – Ò. 9777. – Ñ. 201-209. https://doi.org/10.1117/12.2219338

12. Lobato-Dauzier N., Denoual M., Sato T., Tachikawa S., Jalabert L., Fujita H. Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope // Ultramicroscopy. – 2019. – Ò. 197. – Ñ. 100-104. https://doi.org/10.1016/j.ultramic.2018.12.002

13. Bochobza-Degani O., Elata D., Nemirovsky Y. An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices // Journal of Microelectromechanical Systems. – 2002. – Ò. 11. – ¹. 5. – Ñ. 612-620. https://doi.org/10.1109/JMEMS.2002.803280

14. Allen M., Raulli M., Maute K., Frangopol D.M. Reliability-based analysis and design optimization of electrostatically actuated MEMS // Computers & structures. – 2004. – Ò. 82. – ¹. 13-14. – Ñ. 1007-1020. https://doi.org/10.1016/j.compstruc.2004.03.009

15. Zhu G., Lévine J., Praly L., Peter Y.A. Flatness-based control of electrostatically actuated MEMS with application to adaptive optics: a simulation study // Journal of Microelectromechanical Systems. – 2006. – Ò. 15. – ¹. 5. – Ñ. 1165-1174. https://doi.org/10.1109/JMEMS.2006.880198

16. Zhang W.M., Meng G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation // IEEE sensors journal. – 2007. – Ò. 7. – ¹. 3. – Ñ. 370-380. https://doi.org/10.1109/JSEN.2006.890158

17. Zhang W.M., Meng G., Chen D.I. Stability, nonlinearity and reliability of electrostatically actuated MEMS devices // Sensors. – 2007. – Ò. 7. – ¹. 5. – Ñ. 760-796. https://doi.org/10.3390/s7050760

18. Guo Z.J., McGruer N.E., & Adams G.G. (2007). Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. Journal of Micromechanics and Microengineering,17(9), 1899. Guo Z.J., McGruer N.E., Adams G.G. Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch // Journal of Micromechanics and Microengineering. – 2007. – Ò. 17. – ¹. 9. – Ñ. 1899-1909. https://doi.org/10.1088/0960-1317/17/9/019

19. De Pasquale G., Somà A. Dynamic identification of electrostatically actuated MEMS in the frequency domain // Mechanical systems and signal processing. – 2010. – Ò. 24. – ¹. 6. – Ñ. 1621-1633. https://doi.org/10.1016/j.ymssp.2010.01.010

20. Alsaleem F.M., Younis M.I., Ruzziconi L. An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically // Journal of Microelectromechanical systems. – 2010. – Ò. 19. – ¹. 4. – Ñ. 794-806. https://doi.org/10.1109/JMEMS.2010.2047846

21. Wang B., Zhou S., Zhao J., Chen X. Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS // Journal of Micromechanics and microengineering. – 2011. – Ò. 21. – ¹. 2. – Ñ. 027001. https://doi.org/10.1088/0960-1317/21/2/027001

22. Zhang W.M., Tabata O., Tsuchiya T., Meng G. Noise-induced chaos in the electrostatically actuated MEMS resonators // Physics Letters A. – 2011. – Ò. 375. – ¹. 32. – Ñ. 2903-2910.

23. Ouakad H.M. (2013). An electrostatically actuated MEMS arch band-pass filter. Shock and Vibration, 20(4), 809-819. https://doi.org/10.1016/j.physleta.2011.06.020

24. Caruntu D.I., Martinez I. Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators // International Journal of Non-Linear Mechanics. – 2014. – Ò. 66. – Ñ. 28-32. https://doi.org/10.1016/j.ijnonlinmec.2014.02.007

25. Ramini A.H., Hennawi Q.M., Younis M.I. Theoretical and experimental investigation of the nonlinear behavior of an electrostatically actuated in-plane MEMS arch // Journal of Microelectromechanical Systems. – 2016. – Ò. 25. – ¹. 3. – Ñ. 570-578. https://doi.org/10.1109/JMEMS.2016.2554659

26. Cass S. MEMS in space // IEEE Spectrum. – 2001. – Ò. 38. – ¹. 7. – Ñ. 56-61. https://doi.org/10.1109/6.931884

27. George T. MEMS/NEMS development for space applications at NASA/JPL // Proc. SPIE. – 2002. – Ò. 4755. – Ñ. 556-567. https://doi.org/10.1117/12.462856

28. Lafontan X., Pressecq F., Beaudoin F., Rigo S., Dardalhon M., Roux J.L., Schmitt P., Kuchenbecker J., Baradat B., Lellouchi D., Le-Touze C. The advent of MEMS in space // Microelectronics Reliability. – 2003. – Ò. 43. – ¹. 7. – Ñ. 1061-1083. https://doi.org/10.1016/S0026-2714(03)00120-3

29. Farrar D., Schneider W., Osiander R., Champion J.L., Darrin A.G., Douglas D., Swanson T.D. Controlling micro electromechanical systems (mems) in space // AIP Conference Proceedings. – 2003. – Ò. 654. – ¹. 1. – Ñ. 180-186. https://doi.org/10.1063/1.1541293

30. George T. Overview of MEMS/NEMS technology development for space applications at NASA/JPL // Proc. SPIE. – 2003. – Ò. 5116. – Ñ. 136-148. https://doi.org/10.1117/12.497796

31. Rigaud S., Quadri G., Gilard O., Nicot J.M. Optical MEMS reliability in space environment // Proc. SPIE. – 2006. – Ò. 6186. – Ñ. 221-232. https://doi.org/10.1117/12.661458

32. Shea H.R. Reliability of MEMS for space applications // Proc. SPIE. – 2006. – Ò. 6111. – Ñ. 84-93. https://doi.org/10.1117/12.651008

33. Grönland T.A., Rangsten P., Nese M., Lang M. Miniaturization of components and systems for space using MEMS-technology // Acta Astronautica. – 2007. – Ò. 61. – ¹. 1-6. – Ñ. 228-233. https://doi.org/10.1016/j.actaastro.2007.01.029

34. Jeong S.M., Nam S.U., Park I.H., Park J.H., Lee J. Lee C.H. Telescope with using MEMS mirror for detecting Gamma Ray burst // The Bulletin of The Korean Astronomical Society. – 2008. – Ò. 33. – ¹. 1. – Ñ. 44.2-44.2.

35. Park I.H. MEMS based space telescope for extreme energy cosmic rays experiments // Nuclear Physics B-Proceedings Supplements. – 2004. – Ò. 134. – Ñ. 196-201. https://doi.org/10.1016/j.nuclphysbps.2004.08.031

36. Gradov O.V., Gradova M.A., Maklakova I.A., Kholuiskaya S.N. Towards Electron-Beam-Driven Soft / Polymer Fiber Microrobotics for Vacuum Conditions // Materials Research Proceedings. – 2022. – T. 21. – C. 370-383. https://doi.org/10.21741/9781644901755-64

37. Ford H.C., Clampin M., Illingworth G.D., Krist J.E., Olivier S.S., Petro L., Sommagren G.E. Requirements for an optical 8-m space telescope with a MEMs deformable mirror to detect Earth-like planets around nearby stars // Proc. SPIE. – 2003. – Ò. 4854. – Ñ. 554-557. https://doi.org/10.1117/12.460052

38. Park I.H., Artikova S., Kim J.E., Jeon J.A., Jeong S., Jung A., Lee H.Y., Lee J., Na G., Nam S., Oh S. MEMS Space Telescope Obscura: Pathfinder of Future Space Missions // The Bulletin of The Korean Astronomical Society. – 2007. – Ò. 32. – ¹. 2. – Ñ. 21.

39. Agrawal B., Kubby J. Applications of MEMS in segmented mirror space telescopes // Proc. SPIE. – 2011. – Ò. 7931. – Ñ. 9-25. https://doi.org/10.1117/12.876503

40. Miyamura N. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope // Proc. SPIE. – 2017. – Ò. 10410. – Ñ. 8-17. https://doi.org/10.1117/12.2273868

41. Li M.J., Adachi T., Allen C., Babu S., Bajikar S., Beamesderfer M., Bradley R., Denis K., Costen N., Ewin A., Franz D., Hess L., Hu R., Jackson K.M., Jhabvala M., Kelly D., King T., Kletetschka G., Kutyrev A., Lynch B., Miller T., Moseley H., Mikula V., Mott B., Oh L., Pontius J.T., Rapchun D., Ray C., Schulte E., Schwinger S., Shu P., Silverberg R., Smith W., Snodgrass S., Sohl D., Sparr L., Steptoe-Jackson R., Veronica V., Wang L., Zheng Y., Zincke C. MEMS microshutter arrays for James Webb Space Telescope // Proc. SPIE. – 2006. – Ò. 6415. – Ñ. 77-90. https://doi.org/10.1117/12.706308

42. Chen S., Sivanandam S., Moon D.S. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope // Proc. SPIE. – 2016. – Ò. 9908. – Ñ. 2239-2249. https://doi.org/10.1117/12.2230694

43. Marinaro D.G., McMahon P., Wilson A. Proton radiation effects on MEMS silicon strain gauges // IEEE Transactions on Nuclear Science. – 2008. – Ò. 55. – ¹. 3. – Ñ. 1714-1718. https://doi.org/10.1109/TNS.2008.921933

44. Gomes J., Shea H.R. Displacement damage effects in silicon MEMS at high proton doses // Proc. SPIE. – 2011. – Ò. 7928. – Ñ. 126-135. https://doi.org/10.1117/12.873546

45. Bandi T., Polido-Gomes J., Neels A., Dommann A., Shea H.R. Making MEMS more suited for Space: Assessing the proton-radiation tolerance of structural materials for microsystems in orbit // Proc. SPIE. – 2013. – Ò. 8614. – Ñ. 170-179. https://doi.org/10.1117/12.2004705

46. Patton S.T., Frasca A.J., Talnagi J.W., Hyman D.J., Phillips B.S., Jones J.G., Vaia R.A., Voevodin A.A.. Effect of space radiation on the leakage current of MEMS insulators // IEEE transactions on nuclear science. – 2013. – Ò. 60. – ¹. 4. – Ñ. 3074-3083. https://doi.org/10.1109/TNS.2013.2263840

47. Sallese J.M., Bouvet D. Principles of space-charge based bi-stable MEMS: The junction-MEMS // Sensors and Actuators A: Physical. – 2007. – Ò. 133. – ¹. 1. – Ñ. 173-179. https://doi.org/10.1016/j.sna.2006.03.024

48. Sawant A., Antonuk L.E., El-Mohri Y., Li Y., Su Z., Wang Y., Yamamoto J., Zhao Q., Du H., Daniel J., Street, R. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage X-ray imaging // Medical physics. – 2005. – Ò. 32. – ¹. 2. – Ñ. 553-565. https://doi.org/10.1118/1.1854774

49. Riveros R.E., Yamaguchi H., Mitsuishi I., Takagi U., Ezoe Y., Kato F., Sugiyama S., Yamasaki N., Mitsuda K. Magnetic field assisted finishing of ultra-lightweight and high-resolution MEMS X-ray micro-pore optics // Proc. SPIE. – 2009. – Ò. 7360. – Ñ. 315-322. https://doi.org/10.1117/12.823961

50. Mitsuishi I., Ezoe Y., Ishizu K., Moriyama T., Mita M., Yamasaki N.Y., Mitsuda K., Kanamori Y., Morishita K., Nakajima K. Novel ultra-lightweight and high-resolution MEMS X-ray optics for space astronomy // Sensors and Actuators A: Physical. – 2012. – Ò. 188. – Ñ. 411-416. https://doi.org/10.1016/j.sna.2012.02.042

51. Walko D.A., Jung I.W., Lopez D., Mukhopadhyay D., Schwartz C.P., Shenoy G.K., Wang J. Temporal modulation of synchrotron X-rays using torsional MEMS mirrors // Proc. SPIE. – 2012. – Ò. 8502. – Ñ. 111-116. https://doi.org/10.1117/12.930057

52. Ishikawa K., Ezoe Y., Numazawa M., Ogawa T., Sato M., Nakamura K., Ohashi T., Mitsuda K., Maeda R., Hiroshima H., Kurashima Y. 12-inch X-ray optics based on MEMS process // Microsystem Technologies. – 2017. – Ò. 23. – Ñ. 2815-2821. https://doi.org/10.1007/s00542-016-2980-6

53. Gilles J.P., Megherbi S., Raynaud G., Parrain F., Mathias H., Leroux X., Bosseboeuf A. Scanning electron microscopy for vacuum quality factor measurement of small-size MEMS resonators // Sensors and Actuators A: Physical. – 2008. – Ò. 145. – Ñ. 187-193. https://doi.org/10.1016/j.sna.2007.11.026

54. Zhang C., Zhao H., Xu S., Chen N., Li K., Jiang X., Liu L., Liu Z., Wang L., Wong K.K., Zou J. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror // Optics Letters. – 2020. – Ò. 45. – ¹. 15. – Ñ. 4312-4315. https://doi.org/10.1364/ol.397733

55. Szentesi O.I. Stroboscopic electron mirror microscopy at frequencies up to 100 MHz // Journal of Physics E: Scientific Instruments. – 1972. – Ò. 5. – ¹. 6. – Ñ. 563-567. https://doi.org/10.1088/0022-3735/5/6/024

56. Qiu J., Ha G., Jing C., Baryshev S.V., Reed B.W., Lau J.W., Zhu Y. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method // Ultramicroscopy. – 2016. – Ò. 161. – Ñ. 130-136. https://doi.org/10.1016/j.ultramic.2015.11.006

57. Jing C., Zhu Y., Liu A., Schliep K., Fu X., Zhao Y., Montgomery E., Rush W., Kanareykin A., Katz M., Lau J. Tunable electron beam pulser for picoseconds stroboscopic microscopy in transmission electron microscopes // Ultramicroscopy. – 2019. – Ò. 207. – Ñ. 112829. https://doi.org/10.1016/j.ultramic.2019.112829

58. Bostanjoglo O., Rosin T. Ultrasonically induced magnetic reversals observed by stroboscopic electron microscopy // Optica Acta: International Journal of Optics. – 1977. – Ò. 24. – ¹. 6. – Ñ. 657-664. https://doi.org/10.1080/713819603

59. Schliep K.B., Katz M.B., & Lau J.W. (2018). A RF Broadband Biasing Holder for Ultrafast Stroboscopic Electron Microscopy. Microscopy and Microanalysis, 24(S1), 1852-1853. Schliep K.B., Katz M.B., Lau J.W. A RF Broadband Biasing Holder for Ultrafast Stroboscopic Electron Microscopy // Microscopy and Microanalysis. – 2018. – Ò. 24. – ¹. S1. – Ñ. 1852-1853. https://doi.org/10.1017/S1431927618009741

60. Vinoy K.J., Varadan V.K. Design of reconfigurable fractalantennas and RF-MEMS for space-based systems // Smart materials and structures. – 2001. – Ò. 10. – ¹. 6. – Ñ. 1211-1223.

61. Di Nardo S., Farinelli P., Kim T., Marcelli R., Margesin B., Paola E., Pochesci D., Vietzorreck L., Vitulli F. Design of RF MEMS based switch matrix for space applications // Advances in Radio Science. – 2013. – Ò. 11. – ¹. C. 7. – Ñ. 143-152. https://doi.org/10.5194/ars-11-143-2013

62. Lucibello A., Marcelli R., Proietti E., Bartolucci G., Mulloni V., Margesin B. Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations // Microsystem Technologies. – 2015. – Ò. 21. – Ñ. 1903-1913. https://doi.org/10.1007/s00542-014-2124-9

63. Savin E.A., Kirtaev R.V., Zhukov A.A., Didyk P.I. Design of a packaging-friendly double-topology RF MEMS switch for space applications // Microsystem Technologies. – 2019. – Ò. 25. – ¹. 1. – Ñ. 51-55. https://doi.org/10.1007/s00542-018-3929-8

64. Singh H., Malhotra J. RF-MEMS-Based DPDT Switch on Silicon Substrate for Ku-Band Space-Borne Applications // Transactions on Electrical and Electronic Materials. – 2017. – Ò. 18. – ¹. 1. – Ñ. 16-20. https://doi.org/10.4313/TEEM.2017.18.1.16

65. Hafiane A., Petitgrand S., Gigan O., Bouchafa S., Bosseboeuf A. Study of subpixel image processing algorithms for MEMS in-plane vibration measurements by stroboscopic microscopy // Proc. SPIE. – 2003. – Ò. 5145. – Ñ. 169-179. https://doi.org/10.1117/12.500141

66. van Zeijl H.W., Simon K., Slabbekoorn J.H.C.M., Buel W.V., Gui C.Q. Waferstepper Alignment for MEMS Applications using Diffraction Gratings // MRS Online Proceedings Library. – 2002. – Ò. 729. – ¹. 1. – Ñ. 58. https://doi.org/10.1557/PROC-729-U5.8

67. Day D.R. Multichannel gain equalizer MEMs surface topology effects on chromatic dispersion: a comparison of scalar diffraction modeling to actual product // Proc. SPIE. – 2004. – Ò. 5577. – Ñ. 609-620. https://doi.org/10.1117/12.567485

68. Kim B., Schmittdiel M.C., Degertekin F.L., Kurfess T.R. Actively controlled diffraction grating interferometer MEMS devices // Proc. SPIE. – 2005. – Ò. 5721. – Ñ. 151-158. https://doi.org/10.1117/12.592215

69. Bicen B., Garcia C., Hall N.A., Okandan M., Cui W., Su Q.T., Miles R.N., Degertekin L. Diffraction based optical MEMS microphones and accelerometers with active electrostatic force feedback // The Journal of the Acoustical Society of America. – 2008. – Ò. 123. – ¹. 5_Supplement. – Ñ. 3230. https://doi.org/10.1121/1.2933456

70. Grabarnik S., Emadi A., Wu H., De Graaf G., Vdovin G., Wolffenbuttel R.F. Fabrication of an imaging diffraction grating for use in a MEMS-based optical microspectrograph // Journal of Micromechanics and Microengineering. – 2008. – Ò. 18. – ¹. 6. – Ñ. 064006. https://doi.org/10.1088/0960-1317/18/6/064006

71. Degertekin L., Jeelani K., Qureshi S., Hasler P., Bicen B., Cui W., Su Q.T., Miles R.N. Miniature diffractionbased optical MEMS microphones with integrated optoelectronics // The Journal of the Acoustical Society of America. – 2008. – Ò. 123. – ¹. 5_Supplement. – Ñ. 3229. https://doi.org/10.1121/1.2933454

72. Yu Y.T., Yuan W.Z., Qiao D.Y., Yan B. A simple numerical method to study the far-field diffraction of optical MEMS devices with a large array and complex element geometry // Sensors and Actuators A: Physical. – 2010. – Ò. 158. – ¹. 1. – Ñ. 30-36. https://doi.org/10.1016/j.sna.2009.12.032

73. Shtyrkova K., Arguello L., Oesch D., Sanchez D.J., Kelly P., Tewksbury-Christle C., Smith J. Experimental analysis of diffraction effects from a segmented MEMS deformable mirror for a closed loop adaptive optics system // Proc. SPIE. – 2010. – Ò. 7816. – Ñ. 87-100. https://doi.org/10.1117/12.861544

74. Zhou G., Du Y., Cheo K.K., Chau F.S. MEMS-driven diffraction gratings for rapid scanning of laser beams with very high optical resolution // Proc. SPIE. – 2011. – Ò. 8191. – Ñ. 35-44. https://doi.org/10.1117/12.901076

75. Zamkotsian F., Timotijevic B., Lockhart R., Stanley R.P., Lanzoni P., Luetzelschwab M., Canonica M., Noell W., Tormen M. Optical characterization of fully programmable MEMS diffraction gratings // Optics Express. – 2012. – Ò. 20. – ¹. 23. – Ñ. 25267-25274. https://doi.org/10.1364/OE.20.025267

76. Suresh V.G., DasGupta N., Bhattacharya S. Tunable MEMS diffraction gratings // Proc. SPIE. – 2012. – Ò. 8549. – Ñ. 252-257. https://doi.org/10.1117/12.925113

77. Long H., Xi S., Liu D., Shi T., Xia Q., Liu S., Tang Z. Tailoring diffraction-induced light distribution toward controllable fabrication of suspended C-MEMS // Optics Express. – 2012. – Ò. 20. – ¹. 15. – Ñ. 17126-17135. https://doi.org/10.1364/OE.20.017126

78. Gloor S., Bachmann A.H., Epitaux M., von Niederhäusern T., Vorreau P., Matuschek N., Hsu K., Duelk M., Vélez C. High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings // Proc. SPIE. – 2013. – Ò. 8571. – Ñ. 283-289. https://doi.org/10.1117/12.2007106

79. Wang C., Lu Q., Bai J., Yang G., Wang K., Liu D., Yang Y. Highly sensitive lateral deformable optical MEMS displacement sensor: Anomalous diffraction studied by rigorous coupled-wave analysis // Applied Optics. – 2015. – Ò. 54. – ¹. 30. – Ñ. 8935-8943. https://doi.org/10.1364/AO.54.008935

80. Reitterer J., Fidler F., Schmid G., Hambeck C., Saint Julien-Wallsee F., Leeb W., Schmid U. Beam-clipping-induced diffraction effects in MEMS laser scanners for autostereoscopic outdoor displays // Sensors and Actuators A: Physical. – 2015. – Ò. 233. – Ñ. 582-589. https://doi.org/10.1016/j.sna.2015.06.024

81. Blanche P.A., LaComb L., Wang Y., Wu M.C. Diffraction-based optical switching with MEMS // Applied Sciences. – 2017. – Ò. 7. – ¹. 4. – Ñ. 411. https://doi.org/10.3390/app7040411

82. Suzuki Y., Tezuka S. Numerical simulation of 3D Fox–Li integral equation described by Rayleigh–Sommerfeld diffraction for MEMS-VCSEL // Optical Review. – 2019. – Ò. 26. – Ñ. 430-435. https://doi.org/10.1007/s10043-019-00551-1

83. Han S., Ishfaque A., Phamduy P., Kim B. Effect of squeeze air film damping on diffraction grating based bio-inspired MEMS directional microphone // Microsystem Technologies. – 2020. – Ò. 26. – Ñ. 1203-1212. https://doi.org/10.1007/s00542-019-04650-6

84. Ketchum R.S., Blanche P.A. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution // Photonics. – 2021. – Ò. 8. – ¹. 3. – Ñ. 62. https://doi.org/10.3390/photonics8030062

85. Apollonova I.A., Spiridonov I.N. Application of a optical Fourier processor for dermatoglyphical diagnostics // Proc. SPIE. – 1994. – Ò. 2051. – Ñ. 566-571. https://doi.org/10.1117/12.165929

86. Grudin B.N., Plotnikov V.S., Smol’yaninov N.A. Modeling images with specified fractal characteristics // Optoelectronics, Instrumentation and Data Processing. – 2010. – Ò. 46. – Ñ. 215-221. https://doi.org/10.3103/S8756699010030027

87. Grudin B.N., Plotnikov V.S., Smol’yaninov N.A., Polishchuk S.V. Simulation and reconstruction of nanosructure images in amorphous alloys // Bulletin of the Russian Academy of Sciences: Physics. – 2011. – Ò. 75. – Ñ. 1200-1204. https://doi.org/10.3103/S1062873811090097

88. Kraynova G.S., Frolov A.M., Pisarenko T.A. Fractal ordering nanostructured planar media // Advanced Materials Research. – 2013. – Ò. 718. – Ñ. 85-90. https://doi.org/10.4028/www.scientific.net/AMR.718-720.85

89. Tkachev V.V., Kraynova G.S., Polyansky D.A., Plotnikov V.S., Dubinets A.V. Surface irregularities and magnetism in amorphous metal foils on Fe basis // Solid State Phenomena. – 2016. – Ò. 245. – Ñ. 223-229. https://doi.org/10.4028/www.scientific.net/SSP.245.223

90. Frolov A.M., Ansovich A.V., Tkachev V.V., Kraynova G.S., Dolzhikov S.V. Surface morphology of spinning tapes Fe-(Cu, Nb)-(Si, B) with different content of metalloid // Key Engineering Materials. – 2019. – Ò. 806. – Ñ. 124-129. https://doi.org/10.4028/www.scientific.net/KEM.806.124

91. Gradov O.V. Korrelyatsionno-spektral'nyi analiz kak metod kvalimetrii materialov i gornogo syr'ya: klyuchevye deskriptory struktury, integral'nye chastotnye i prostranstvennye kharakteristiki i ikh dinamika // Innovatsii i perspektivy razvitiya gornogo mashinostroeniya i ehlektromekhaniki. – 2021. – S. 337-340.

92. Pustovalov E.V., Voitenko O.V., Grudin B.N., Plotnikov V.S. Graphics processors in problems of electron tomography // Optoelectronics, Instrumentation and Data Processing. – 2012. – Ò. 48. – Ñ. 62-68. https://doi.org/10.3103/S8756699012010098

93. Sheromova I.A., Starkova G.P., Starkov S.V. Methods for the Structural Analysis of Highly Elastic Materials // IOP Conference Series: Earth and Environmental Science. – 2020. – Ò. 459. – ¹. 6. – Ñ. 062101. https://doi.org/10.1088/1755-1315/459/6/062101

94. Gorshenev V.N., Gradov O.V., Gradova M.A. Differentsial'naya orientatsionnaya otsenka strukturnykh biomimeticheskikh svoistv poristykh tkaneinzhenernykh konstruktsii s ispol'zovaniem sistem korrelyatsionnospektral'nogo analiza real'nogo vremeni i matematicheskogo apparata teorii morfizmov i (ili) teorii kategorii // Geny i Kletki. – 2019. – T. 14. – ¹. SUPPL. – Ñ. 68-69.http://dx.doi.org/10.23868/gc122415

95. Orekhov T.K., Gradov O.V. From desolvation-induced self-organization on the MALDI anchor target chip surfaces to laser-induced self-organization in MALDI techniques: Correlation-spectral analysis and complex wavelet analysis of tesiographic spots on the anchor chips // Materials Technology Reports. – 2023. – Ò. 1. – ¹. 1. – Ñ. 124. https://doi.org/10.59400/mtr.v1i1.124

96. Gradov O.V. Spectrozonal and multispectral raster lens-less microscopy of aquatic organisms: Towards new contact optical methods of environmental biotesting using standard model organisms in variable environments // Proc. SPIE. – 2024. – Ò. 13279. – Ñ. 499-505. https://doi.org/10.1117/12.3041302

97. Biryukov V.P., Prince A.N., Maklakova I.A., Gradov O.V. Metallographic DPSSL-assisted lens-less microscopy of Si-Al systems using a multiangle planar analyzer based on a polarizing microscope rotating table and a digital image correlator/2D FFT spectrometer // Proc. SPIE. – 2024. – Ò. 13279. – Ñ. 561-567. https://doi.org/10.1117/12.3041314

98. Gradov O.V., Yablokov A.G., Skrynnik A.A. Periodimetr-regulometr dlya kineticheskogo analiza simvol'nykh registrogramm korrelyatsionnoi stroboskopicheskoi ehlektronnoi mikroskopii i dannykh mikrozondovogo khimicheskogo kartirovaniya // Fundamental'nye problemy radioehlektronnogo priborostroeniya. – 2017. – T. 17. – ¹. 3. – Ñ. 769-772.

99. Gradov O.V., Aleksandrov P.L., Gradova M.A. Issledovanie obraztsov relevantnykh dlya pustynnykh mestonakhozhdenii mineralov metodami programmnogo korrelyatsionno-spektral'nogo analiza registrogramm skaniruyushchei ehlektronnoi mikroskopii: ot 2D-Fur'e-spektrov do on-lain-analiza statistiki integral'nykh prostranstvennykh kharakteristik // Programmnye sistemy i vychislitel'nye metody. – 2019. – ¹. 4. – Ñ. 125-171. https://doi.org/10.7256/2454-0714.2019.4.31379

100. Gradov O.V. Kriokonveiernye protokoly v korrelyatsionnoi svetovoi i ehlektronnoi mikroskopii: ot mnogourovnevoi vizualizatsii do modelirovaniya biofizicheskikh ehffektov i «krioteranostikI» // Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. – 2023. – T. 78. – ¹. 3S. – Ñ. 57-62. https://doi.org/10.55959/MSU0137-0952-16-78-3S-10

101. Gradov O.V. Cryoconveyor Protocols in Correlative Light and Electron Microscopy: From Multilevel Imaging to Modeling the Biophysical Effects and “Cryotheranostics” // Moscow University Biological Sciences Bulletin. – 2023. – Ò. 78. – ¹. Suppl 1. – Ñ. S64-S68. https://doi.org/10.3103/S0096392523700244

102. Fishchenko V.K., Dolgikh G.I., Zimin P.S., Subote A.E. Some results of oceanological video monitoring // Doklady Earth Sciences. –2018. – Ò. 482. – Ñ. 1244-1247. https://doi.org/10.1134/S1028334X18090283

103. Fishchenko V.K., Zimin P.S., Zatserkovnyi A.V., Goncharova A.A., Suboteh A.E., Golik A.V. Statsionarnye sistemy podvodnogo videonablyudeniya: vozmozhnosti primeneniya dlya monitoringa bioty pribrezhnykh akvatorii zaliva Petra Velikogo (Yaponskoe more) // Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk. – 2018. – ¹. 1 (197). – Ñ. 149-160.

104. Fischenko V.K., Goncharova A.A., Dolgikh G.I., Zimin P.S., Subote A.E., Klescheva N.A., Golik A.V. Express image and video analysis technology QAVIS: application in system for video monitoring of Peter the Great Bay (Sea of Japan/East Sea) // Journal of Marine Science and Engineering. – 2021. – Ò. 9. – ¹. 10. – Ñ. 1073. https://doi.org/10.3390/jmse9101073

105. Dolgikh G.I., Fishchenko V.K., Goncharova A.A. O vozmozhnosti registratsii volneniya i kolebanii urovnya morya v pribrezhnykh raionakh Mirovogo okeana na osnove analiza video v seti Internet // Doklady Akademii nauk. – 2019. – T. 488. – ¹6. – C. 667-672. https://doi.org/10.31857/S0869-56524886667-672

106. Fishchenko V.K., Goncharova A.A., Zimin P.S. Primenenie sistem statsionarnogo podvodnogo videonablyudeniya dlya otsenivaniya parametrov volneniya i techenii // Tekhnicheskie problemy osvoeniya Mirovogo okeana. – 2019. – ¹. 8. – Ñ. 230-237.

107. Dolgikh G.I., Fishchenko V.K., Goncharova A.A. O vozmozhnosti registratsii volneniya i kolebanii urovnya morya v pribrezhnykh raionakh Mirovogo okeana na osnove analiza video v seti Internet // Doklady Akademii nauk. – 2019. – T. 488. – ¹. 6. – Ñ. 667-672.

108. Dolgikh G.I., Fishchenko V.K., Goncharova A.A. Potential for recording of waves and sea level fluctuations in the world ocean coastal areas by internet video analysis // Doklady Earth Sciences. – 2019. – Ò. 488. – Ñ. 1264-1267. https://doi.org/10.1134/S1028334X19100209

109. Zimin P.S., Fishchenko V.K., Suboteh A.E., Zatserkovnyi A.V., Golik A.V. Razrabotka i aprobatsiya v bukhte Alekseeva (o. Popova) tekhnologii registratsii volneniya i kolebanii urovnya morya s ispol'zovaniem videovolnomerov // Fizika geosfer. – 2019. – ¹ 11. – Ñ. 53-64. https://doi.org/10.35976/POI.2019.25.50.005

110. Fishchenko V.K., Zimin P.S., Golik A.V., Goncharova A.A. Ispol'zovanie sistem statsionarnogo podvodnogo videonablyudeniya dlya otsenivaniya parametrov podvodnykh techenii i morskogo volneniya // Podvodnye issledovaniya i robototekhnika. – 2020. – ¹. 2. – Ñ. 62-73. https://doi.org/10.37102/24094609.2020.32.2.008

111. Goncharova A.A., Fishchenko V.K., Dubina V.A. Primenenie programmy ehkspress-analiza izobrazhenii i video QAVIS v zadachakh sputnikovogo monitoringa // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. – 2012. – T. 9. – ¹. 3. – Ñ. 293-298.

112. Mitnik L.M., Kuzlyakina YU.A. Ledyanoi pokrov zaliva Petra Velikogo na izobrazheniyakh RSA PALSAR so sputnika ALOS // Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk. – 2013. – ¹. 6 (172). – Ñ. 50-58.

113. Adamovich E.D., Gradov O.V., Nasirov F.A. Zhidkometallicheskaya mikroflyuidika s morfometricheskim korrelyatsiionno-spektral'nym kontrolem sredy: ot zhidkometallicheskoi antenny do radiochastotnoi ostsillopolyarografii // Fundamental'nye problemy radioehlektronnogo priborostroeniya. – 2018. – T. 18, ¹ 3. – Ñ. 650–653. http://dx.doi.org/10.13140/RG.2.2.33474.63682

114. Gradov O.V., Nasirov F.A., Yablokov A.G. Bezlinzovaya gemotsitometriya na chipe so vtorichnym preobrazovaniem signalov / izobrazhenii kletok v ramkakh nekanonicheskoi fotometricheskoi modeli // Fotonika. – 2018. – T. 12. – ¹ 7. – Ñ. 716–729. https://doi.org/10.22184/1993-7296.2018.12.7.716.729

115. Knick C.R., Morris C.J. Material and process development of thin film shape memory alloy for MEMS actuator // Proc. ASME (American Society of Mechanical Engineers). – 2015. – Ò. 57298. – Ñ. V001T01A001. https://doi.org/10.1115/SMASIS2015-8801

116. Choudhary N., Kaur D. Shape memory alloy thin films and heterostructures for MEMS applications: A review // Sensors and Actuators A: Physical. – 2016. – Ò. 242. – Ñ. 162-181. https://doi.org/10.1016/j.sna.2016.02.026

117. Zorman C.A., Mehregany M., Kahn H., Heuer A.H. New developments in MEMS using SiC and TiNi shape memory alloy materials // Current Opinion in Solid State and Materials Science. – 1997. – Ò. 2. – ¹. 5. – Ñ. 566-570. https://doi.org/10.1016/S1359-0286(97)80046-0

118. Kahn H., Huff M.A., Heuer A.H. The TiNi shape-memory alloy and its applications for MEMS // Journal of Micromechanics and Microengineering. – 1998. – Ò. 8. – ¹. 3. – Ñ. 213-221. 10.1088/0960-1317/8/3/007

119. Gill J.J., Ho K., Carman G.P. The Fabrication of Thin Film NiTi Shape Memory Alloy Micro Actuator for MEMS Application // Proc. ASME (American Society of Mechanical Engineers). – 1999. – Ò. 16424. – Ñ. 125-131. https://doi.org/10.1115/IMECE1999-0536

120. Fu Y., Du H., Huang W., Huang X., Miao J., Liu Y. Preparation of crystalline TiNi shape-memory alloy thin film for MEMS applications // Proc. SPIE. – 2000. – Ò. 4230. – Ñ. 140-146. https://doi.org/10.1117/12.404895

121. Fu Y., Huang W., Du H., Huang X., Tan J., Gao X. Characterization of TiNi shape-memory alloy thin films for MEMS applications // Surface and Coatings Technology. – 2001. – Ò. 145. – ¹. 1-3. – Ñ. 107-112. https://doi.org/10.1016/S0257-8972(01)01324-X

122. Du H., Fu Y. Characterization and MEMS application of sputtered TiNi shape memory alloy thin films // Proc. SPIE. – 2001. – Ò. 4601. – Ñ. 138-146. https://doi.org/10.1117/12.444686

123. Fu Y., Du H. Magnetron sputtered TiNiCu shape memory alloy thin film for MEMS applications // Microsystems. – Ò. 9. – 2002. – Ñ. 77-96. https://doi.org/10.1007/978-1-4757-5791-0_4

124. Lai B.K., Kahn H., Phillips S.M., Heuer A.H. A comparison of PZT-based and TiNi shape memory alloy-based MEMS microactuators // Ferroelectrics. – 2004. – Ò. 306. – ¹. 1. – Ñ. 221-226. https://doi.org/10.1080/00150190490460867

125. Namazu T., Tashiro Y., Inoue S. Ti–Ni shape memory alloy film-actuated microstructures for a MEMS probe card // Journal of Micromechanics and Microengineering. – 2006. – Ò. 17. – ¹. 1. – Ñ. 154. 10.1088/0960-1317/17/1/020

126. Namazu T., Hashizume A., Inoue S. Thermomechanical tensile characterization of Ti–Ni shape memory alloy films for design of MEMS actuator // Sensors and Actuators A: Physical. – 2007. – Ò. 139. – ¹. 1-2. – Ñ. 178-186. https://doi.org/10.1016/j.sna.2006.10.047

127. Casati R., Vedani M., Tofail S.A., Dikinson C., Tuissi A. On the preparation and characterization of thin NiTi shape memory alloy wires for MEMS // Fracture and Structural Integrity. – 2013. – Ò. 7. – ¹. 23. – Ñ. 7-12. https://doi.org/10.3221/IGF-ESIS.23.01

128. Knick C.R., Smith G.L., Morris C.J., Bruck H.A. Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators // Sensors and Actuators A: Physical. – 2019. – Ò. 291. – Ñ. 48-57. https://doi.org/10.1016/j.sna.2019.03.016

129. Ôîíãðàòîâñêè Ñ.Â., Êîëåäîâ Â.Â., Îðëîâ À.Ï., Ôðîëî À.Â., Ñìîëîâè÷ À.Ì., Ëåãà Ï.Â., Øàâðîâ Â.Ã., Ôàì Â.×., Èðæàê À.Â., Ïåêèçåõ Ò. Áõàò÷àòàððèÿ Ñ., Ñîçäàíèå êîëüöåâûõ è ïåòëåâûõ ïîäâåøåííûõ ñòðóêòóð íà îñíîâå íàíîïðîâîëîê ìåòîäîì ìåõàíè÷åñêîé íàíîñáîðêè» ñíèçó-ââåðõ» // Æóðíàë ðàäèîýëåêòðîíèêè. – 2019. – ¹. 2. – Ñ. 1-9. 10.30898/1684-1719.2019.2.14

130. Varadan V.K., Varadan V.V., Motojima S. Three-dimensional polymeric and ceramic MEMS and their applications // Proc. SPIE. – 1996. – Ò. 2722. – Ñ. 156-164. https://doi.org/10.1117/12.240440

131. Hossfeld J., Paatzsch T., Schulze J., Neumeier M., Weber L., Bauer H.D., Ehrfeld W. Polymeric optical MEMS // Proc. SPIE. – SPIE, 1999. – Ò. 3680. – Ñ. 637-645. https://doi.org/10.1117/12.341256

132. Ruben K.A., Flaim T.D., Li C. Polymeric protective coatings for MEMS wet-etch processes // Proc. SPIE. – SPIE, 2003. – Ò. 5342. – Ñ. 212-220. https://doi.org/10.1117/12.523965

133. Su Y.C., Lin L. Localized bonding processes for assembly and packaging of polymeric MEMS // IEEE Transactions on advanced packaging. – 2005. – Ò. 28. – ¹. 4. – Ñ. 635-642. https://doi.org/10.1109/TADVP.2005.858333

134. Bachmann D., Kuhne S., Hierold C. Fabrication process of polymeric springs for MEMS applications // The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. – IEEE, 2005. – Ò. 2. – Ñ. 1416-1419. https://doi.org/10.1109/SENSOR.2005.1497347

135. Zhong Z.W., Wang Z.F., Tan Y.H. Chemical mechanical polishing of polymeric materials for MEMS applications // Microelectronics Journal. – 2006. – Ò. 37. – ¹. 4. – Ñ. 295-301. https://doi.org/10.1016/j.mejo.2005.05.016

136. Lang U., Rust P., Dual J. Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges // Microelectronic Engineering. – 2008. – Ò. 85. – ¹. 5-6. – Ñ. 1050-1053. https://doi.org/10.1016/j.mee.2008.01.051

137. Takahashi Y., Teh K.S., Lu Y.W. Fabrication and Characterization of Nano-Structuring Polymeric Surfaces for MEMS Applications // Proc. ASME. – 2008. – Ò. 48746. – Ñ. 209-213. https://doi.org/10.1115/IMECE2008-68893

138. Ozaydin-Ince G., Coclite A.M., Gleason K.K. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes // Reports on Progress in Physics. – 2011. – Ò. 75. – ¹. 1. – Ñ. 016501. https://doi.org/10.1088/0034-4885/75/1/016501

139. Li K.H., Liu L.H., Wang P.C. Fabrication of robust polyaniline thin film electrodes on the surface of elastomeric poly (dimethylsiloxane) for polymeric MEMS applications // 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). – IEEE, 2013. – Ñ. 330-333. https://doi.org/10.1109/IMPACT.2013.6706680

140. Pelegrini M.V., Pereyra I. Study of a-Si1-XCX: H Thin Films Obtained by PECVD in Temperatures Lower than 250º C Aiming Applications in Optics, Thin Films Devices on Polymeric Substrate and MEMS // ECS Transactions. – 2009. – Ò. 23. – ¹. 1. – Ñ. 127. https://doi.org/10.1149/1.3183710

141. Elias A.L., Harris K.D., Bastiaansen C.W., Broer D.J., Brett M.J. Polymeric helices with submicron dimensions for MEMS devices // Proc. SPIE. – 2005. – Ò. 5836. – Ñ. 41-55. https://doi.org/10.1117/12.608584

142. Diemeer M.B. J., Dekker R. Mems VOA with Polymeric Thermal Microactuators // 2002 28TH European Conference on Optical Communication. – IEEE, 2002. – Ò. 3. – Ñ. 1-2.

143. Lago H., Zakaria Z., Jamlos M.F., Soh P.J. A wideband reconfigurable folded planar dipole using MEMS and hybrid polymeric substrates // AEU-International Journal of Electronics and Communications. – 2019. – Ò. 99. – Ñ. 347-353. https://doi.org/10.1016/j.aeue.2018.12.011

144. Bachmann D., Kuhne S., Hierold C. MEMS scanning mirror supported by soft polymeric springs and actuated by electrostatic charge separation // 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). – IEEE, 2007. – Ñ. 723-726. https://doi.org/10.1109/MEMSYS.2007.4433088

145. Rathna K., Haji-Saeed B., Pyburn D., Leon R., Sengupta S.K., Testorf M., Goodhue W., Khoury J., Drehman A., Woods C.L., Kierstead J. Photoconductive Optically Driven MEMS Spatial Light Modulator utilizing a GaAs Substrate and Polymeric Membrane Mirror // Frontiers in Optics. – Optica Publishing Group, 2003. – Ñ. TuV5. https://doi.org/10.1364/FIO.2003.TuV5

146. Demir M.M., Naseer M., Bechteler T.F., Gurbuz Y., Menceloglu Y.Z. Polyurethane nanofiber webs for sensor and actuator applications in microelectromechanical systems (MEMS) // MRS Online Proceedings Library (OPL). – 2003. – Ò. 782. – Ñ. A5. 29.

147. Burianskaya E.L., Gradov O.V., Gradova M.A., Iordanskii A.L., Kochervinskii V.V., Maklakova I.A., Olkhov A.A., Ratnovskaya A.V. Time-resolved estimation of multifractal spectra of ferroelectric/piezoelectric polymer dynamics and neuromimetic fiber orientation: Towards electric-field- and electron-beam-controllable scaffolds and tissue-engineering constructs with dynamic beads // Advanced Structured Materials. – 2025. – Vol. 221. http://dx.doi.org/10.1007/978-3-031-75626-9_6 (in press)

148. Zhang Y., Wesolowski M., Karakatsani A., Witzemann V., Kröger S. Formation of cholinergic synapse-like specializations at developing murine muscle spindles // Developmental biology. – 2014. – Ò. 393. – ¹. 2. – Ñ. 227-235. https://doi.org/10.1016/j.ydbio.2014.07.011

149. Higashida H., Furuya S. Cholinergic synapse formation between NG108-15 and muscle cells and modulation of transmission // Neuroscience Research Supplements. – 1990. – Ò. 13. – Ñ. S75-S79. https://doi.org/10.1016/0921-8696(90)90034-Z

150. Malomouzh A.I., Nikolsky E.E. Modern concepts of cholinergic neurotransmission at the motor synapse // Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. – 2018. – Ò. 12. – Ñ. 209-222. https://doi.org/10.1134/S1990747818030078

151. Singh R.A., Yoon E.S., Kim H.J., Kong H., Jeong H.E., Suh K.Y. Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS // KSTLE International journal. – 2005. – Ò. 6. – ¹. 2. – Ñ. 33-38.

 

For citation:

Aleksandrov P.L., Buryanskaya E.L., Gradov O.V., Iordansky A.L., Maklakova I.A., Olkhov A.A., Ratnovskaya A.V., Kholuiskaya S.N. Towards the design of electron beam-controlled (optical) fiber microelectromechanical systems based on piezoelectric and ferroelectric polymers and composites // Journal of Radio Electronics. – 2025. – ¹. 8. https://doi.org/10.30898/1684-1719.2025.8.1 (In Russian)