Journal of Radio Electronics. eISSN 1684-1719. 2025. №8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.8.4
for massive mimo Channel estimation:
S.V. Dorokhin, D.V. Shuvalov, V.A. Lyashev
Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudniy, Moscow Region, 141700, Russia
The paper was received May 2, 2025.
Abstract. 5G trend towards larger antenna arrays, higher bandwidth and subcarrier number continues towards 6G. As the size of the channel tensor grow, so does the channel estimation overhead. For conventional methods based on regular pilots and interpolation further overhead reduction is prohibited by the Nyquist limit and delay-domain aliasing. In the first part of our work, we demonstrated that slab sampled tensor completion methods are immune to aliasing effect. The minimal number of slabs is limited not by the delay spread of the channel, but by the channel tensor ranks. Despite good theoretical performance of the algorithms proposed in the previous part, implementation of slab sampling in MIMO systems and its impact on the performance of the completion algorithms is an equally important question. In this article we propose Quadratic Permutation Polynomial (QPP)-based sampling and Simultaneous OMP for wideband slabs estimation. We demonstrate that if this approach is used to estimate the entire tensor, the overhead can be reduced twice without spectral efficiency degradation. Moreover, at 0-5 dB SNR this method yields 10-50 % spectral efficiency increase. SOMP can also be used for wideband slabs estimation and further Tucker-based completion with QPP-interleaved frequency-sparse slabs. This approach yields 4 times overhead reduction compared to conventional method and 12.5 % spectral efficiency increase compared to pure SOMP. To avoid frequency-sparse slabs interleaving for practical reasons, one may switch to Tensor Train model and use regular slabs. This, however, yields smaller overhead reduction (only 3.43 times) and 7.5-15 % spectral efficiency degradation compared to QPP-interleaved Tucker completion.
Key words: MIMO, OFDM, channel estimation, greedy approximation, tensor completion, cross (skeleton) approximations.
Corresponding author: Dorokhin Semyon Vladimirovich, dorohin.sv@phystech.edu
References
1. Wang C.X. et al. On the road to 6G: Visions, requirements, key technologies, and testbeds // IEEE Communications Surveys & Tutorials. – 2023. – Т. 25. – №. 2. – С. 905-974.
2. Alhamed A., Gültepe G., Rebeiz G.M. 64-element 16–52-GHz transmit and receive phased arrays for multiband 5G-NR FR2 operation // IEEE Transactions on Microwave Theory and Techniques. – 2022. – Т. 71. – №. 1. – С. 360-372.
3. Lin X. The bridge toward 6G: 5G-Advanced evolution in 3GPP Release I9 // IEEE Communications Standards Magazine. – 2025. – Т. 9. – №. 1. – С. 28-35.
4. Kanatsoulis C.I. et al. Tensor completion from regular sub-Nyquist samples // IEEE Transactions on Signal Processing. – 2019. – Т. 68. – С. 1-16.
5. Dorokhin S., Lyashev V., Makurin M. 6G XL-MIMO Channel Estimation with Sub-Nyquist Tensor Completion // 2025 27th International Conference on Digital Signal Processing and its Applications (DSPA). – IEEE, 2025. – С. 1-6.
6. Determe J.F. et al. On the exact recovery condition of simultaneous orthogonal matching pursuit // IEEE Signal Processing Letters. – 2015. – Т. 23. – №. 1. – С. 164-168.
7. Fertl P., Matz G. Channel estimation in wireless OFDM systems with irregular pilot distribution // IEEE Transactions on signal processing. – 2010. – Т. 58. – №. 6. – С. 3180-3194.
8. Temlyakov V. Greedy approximation. – Cambridge University Press, 2011. – Т. 20.
9. Tropp J.A. Greed is good: Algorithmic results for sparse approximation // IEEE Transactions on Information theory. – 2004. – Т. 50. – №. 10. – С. 2231-2242.
10. Haupt J., Applebaum L., Nowak R. On the restricted isometry of deterministically subsampled Fourier matrices // 2010 44th Annual Conference on Information Sciences and Systems (CISS). – IEEE, 2010. – С. 1-6.
11. Takeshita O.Y. On maximum contention-free interleavers and permutation polynomials over integer rings // IEEE Transactions on Information Theory. – 2006. – Т. 52. – №. 3. – С. 1249-1253.
12. Dorokhin S.V., Shuvalov D.V., Makurin M.N., Lyashev V.A., Oseledets I.V. Reference signals based on permutation polynomials for tensor completion of MIMO OFDM channel // T-Comm -- Telecommunications and Transport. – 2025. – №19. – С. 4-27.
13. Tropp J.A., Gilbert A.C. Signal recovery from random measurements via orthogonal matching pursuit // IEEE Transactions on information theory. – 2007. – Т. 53. – №. 12. – С. 4655-4666.
14. Tropp J.A., Gilbert A.C., Strauss M.J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit // Signal processing. – 2006. – Т. 86. – №. 3. – С. 572-588.
15. Liutkus A. et al. Compressed sensing under strong noise. Application to imaging through multiply scattering media // 2014 22nd European Signal Processing Conference (EUSIPCO). – IEEE, 2014. – С. 716-720.
16. He X., Song R., Zhu W.P. Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-OFDM systems // IEEE Transactions on Vehicular Technology. – 2015. – Т. 65. – №. 5. – С. 2990-3004.
17. Singh I., Kalyani S., Giridhar K. A practical compressed sensing approach for channel estimation in OFDM systems // IEEE Communications Letters. – 2015. – Т. 19. – №. 12. – С. 2146-2149.
18. Shuvalov D., Dorokhin S., Makurin M. Complexity Reduction of the Super-Resolution Iterative Reweighted Algorithm // 2025 27th International Conference on Digital Signal Processing and its Applications (DSPA). – IEEE, 2025. – С. 1-6.
19. Huang H., Zhang J., Jiang J. Low complexity hybrid-field channel estimation based on simultaneous weighted OMP algorithm in Extreme Large-scale MIMO systems // IEEE Access. – 2024. – Т. 12. – С. 46551-46561.
20. Jaeckel S. et al. QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials // IEEE transactions on antennas and propagation. – 2014. – Т. 62. – №. 6. – С. 3242-3256.
21. Cho Y.S. et al. MIMO-OFDM wireless communications with MATLAB. – John Wiley & Sons, 2010.
22. Ермолаев В.Т., Флаксман А.Г., Елохин А.В., Сорокин И.С. ПРОСТРАНСТВЕННАЯ ОБРАБОТКА СИГНАЛОВ В MIMO СИСТЕМАХ СОТОВОЙ СВЯЗИ.. – Нижний Новгород: Национальный исследовательский Нижегородский государственный университет, 2020. – 134 с. [Ermolaev V.T., Flaxman A.G., Elokhin A.V., Sorokin I.S., Spatial signal processing for mobile MIMO systems]
23. Мансур С.Х., Чубариков В.Н. Об одном обобщении суммы Гаусса // Вестник Московского университета. Серия 1. Математика. Механика. – 2009. – №. 2. – С. 77-80. [Mansur S. Kh., Chubarkov V.N. On a generalization of Gauss sum]
For citation:
Dorokhin S.V., Shuvalov D.V., Lyashev V.A. Sub-Nyquist tensor completion for massive MIMO channel estimation: Part 2 // Journal of Radio Electronics. – 2025. – №. 8. https://doi.org/10.30898/1684-1719.2025.8.3 (In Russian)