"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2018

contents of issue      DOI  10.30898/1684-1719.2018.12.17     full text in Russian (pdf)  

On approach to optimize manufacturing of field-effect heterotransistors framework circuit of a sixth-order Chebyshev low-pass filter to increase their integration rate. The influence of mismatch-induced stress

 

E. L. Pankratov

Lobachevsky University, Gagarin prosp., 23, Nizhny Novgorod 603950, Russia

 

The paper is received on December 12, 2018

 

Abstract. In this paper we introduce an approach to increase density of field-effect transistors framework a circuit of a sixth-order Chebyshev low-pass filter. Framework the approach we consider manufacturing the inverter in heterostructure with specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that dopant and radiation defects should be annealed framework an optimized scheme. Framework the optimized scheme user of the scheme should choose required spatial distribution of dopant (let it be idealized). After that the user shall choose value of annealing time by minimization of approximation error between the above chosen spatial distribution of dopant and nearest real spatial distribution of dopant. We also analyzed influence of mismatch-induced stress in the considered heterostructure on distribution of concentration of dopant. Based on the analysis we formulate recommendations to decrease value of mismatch-induced stress. We introduce an analytical approach to analyze linear and nonlinear mass and heat transports in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress. The approach gives a possibility to take into account spatial and at the same time temporal variations of parameters of both types of transports (such as diffusion and heat diffusion coefficients).

Keywords: sixth-order Chebyshev low-pass filter; increasing integration rate of field-effect heterotransistors; optimization of manufacturing.

References

1. V.I. Lachin, N.S. Savelov. Elektronika [Electronics]. Rostov-on-Don, Feniks Publ., 2001.

2. A. Polishscuk. Sovremennaya elektronika - Modern Electronics. 2004. Issue 12. P. 8-11 (In Russian).

3. G. Volovich. Sovremennaya elektronika - Modern Electronics. 2006. Issue 2. P. 10-17 (In Russian).

4. A. Kerentsev, V. Lanin. Silovaya elektronika - Power Electronics. 2008. Issue 1. P. 34 (In Russian).

5. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. 2009. Vol. 43 No. 7. PP. 865-871.

6. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. Semiconductors. 2009. Vol. 43, No. 7. PP. 939-942.

7. O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. Semiconductors. 1998. Vol. 32. No. 9. PP. 921-923.

8. I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Semiconductors. 2009. Vol. 43. No. 8. PP. 980-984.

9. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Appl. Phys. Lett. 2013. Vol. 102. No. 5. PP. 053901-053905.

10. J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Appl. Phys. Lett. 2013. Vol. 102. No. 15. PP. 152114-152118.

11. N.I. Volokobinskaya, I.N. Komarov, T.V. Matyukhina, V.I. Reshetnikov, A.A. Rush, I.V. Falina, A.S. Yastrebov. Semiconductors. 2001. Vol. 35 (8). P. 974-978.

12. E.L. Pankratov, E.A. Bulaeva. Reviews in Theoretical Science. 2013. Vol. 1 No. 1. PP. 58-82 (2013).

13. A.E. Boukili. The international journal for computation and mathematics in electrical and electronic engineering. 2017. Vol. 36. No. 1. PP. 78-89.

14. S.A. Kukushkin, A.V. Osipov, A.I. Romanychev. Physics of the Solid State. 2016. Vol. 58. No. 7. PP. 1448-1452.

15. E.M. Trukhanov, A.V. Kolesnikov, I. D. Loshkarev. Russian Microelectronics. 2015. Vol. 44. No. 8. PP. 552-558.

16. Zh. Zhang, Zh. Duan, Y. Long, L. Yuan. Analog Integr. Circ. Sig. Process. 2014. Vol. 81. PP. 289-297.

17. K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Appl. Phys. Lett. 2006. Vol. 89. No. 17. PP. 172111-172114.

18. H.T. Wang, L.S. Tan, E. F. Chor. J. Appl. Phys. 2006. Vol. 98. No. 9. PP. 094901-094905.

19. Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Radiophysics and Quantum Electronics. 2003. Vol. 43. No. 3. PP. 749-755.

20. Y.W. Zhang, A.F. Bower. Journal of the Mechanics and Physics of Solids. 1999. Vol. 47. No. 11. PP. 2273-2297.

21. L.D. Landau, E.M. Lifshits. Teoreicheskaya fizika. Tom 7. Teotiya uprugosti [Theoretical physics. Vol. 7. Theory of elasticity]. Moscow, Physmatlit Publ. , 2001. (In Russian)

22. Z.Yu. Gotra. Tekhnologiya mikroelektronnykh ustroistv [Technology of microelectronic devices]. Moscow, Radio i svyaz Publ., 1991. (In Russian)

23. P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. 1989. Vol. 61. No. 2. PP. 289-388 1989.

24. V.L. Vinetskiy, G.A. Kholodar'. Radiotsionnaya fizika poluprovodnikov [Radiative physics of semiconductors]. Kiev, "Naukova Dumka" Publ.,  1979. (In Russian)

25. E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. 2014. Vol. 4. No. 1. PP. 17-31.

26. Yu.D. Sokolov. Applied Mechanics. 1955 Vol. 1. No. 1. PP. 23-35.

27. E.L. Pankratov. Russian Microelectronics. 2007. Vol. 36. No. 1. PP. 33-39.

28. E.L. Pankratov. Int. J. Nanoscience. 2008. Vol. 7. No. 4-5. PP. 187197.

29. E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. 2012. Vol. 3. No. 3. PP. 119-130.

30. E.L. Pankratov. Nano. 2011. Vol. 6. No. 1. PP. 31-40.

31. E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. 2017. Vol. 14. No. 6. PP. 3018-3033.

32. E.L. Pankratov, E.A. Bulaeva. Multidiscipline Modeling in Materials and Structures. 2006. Vol. 12. No. 4. P. 578-604.

 

For citation:

E. L Pankratov. On approach to optimize manufacturing of field-effect heterotransistors framework circuit of a sixth-order Chebyshev low-pass filter to increase their integration rate. The influence of mismatch-induced stress. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 12. Available at http://jre.cplire.ru/jre/dec18/17/text.pdf

DOI  10.30898/1684-1719.2018.12.17