"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2019

contents of issue      DOI  10.30898/1684-1719.2019.12.12   full text in Russian (pdf)  

UDC 621.383.933

Designing LED modules

 

A. A. Kurushin

 Moscow Power Engineering Institute (National University), Krasnokazarmennaja, 14, Moscow 111250, Russia

 

 The paper is received on December 8, 2019

 

Abstract. The article shows optical emitters similar to Ultra-High Frequency stabilized resonators with lower modes of oscillations.  It is proposed to use Quantum Points in an array, forming a Quantum Stars, a Quantum Rings, etc., as active elements. Results of the research is presented, which is performed by using ANSYS HFSS, allowing not only calculate the parameters of multiple-cavity systems, but also illustrate pulsating electromagnetic field emitted by the Quantum Stars and Rings. The presented examples of emitters can be applied both for creation of effective LED, and in High Resolution Color Displays, and also in Fiber-Optic communication systems.

Key Words: LED modules, nanotechnology, HFSS ANSYS, heterostructures, optics, 3D- resonator, quantum wires, quantum dots, quantum disks.

References

1. Schubert F. Light Emitting Diodes. Second edition.  Cambridge University Press, 2006.

2. Alferov Zh.I. History and Future of Semiconductor Heterostructures. Fizika Tverdogo Tela – Physics of the Solid State. 1998. Vol.32. No.1. P.3-18. (In Russian)

3. Zvezdin A. K. Optical Resonators, Waveguides, Photonic Crystals. Priroda - Nature. 2004. No. 10. (In Russian)

4. Alexandrov I. A., Zhuravlev K. S., Mansurov V. G., Nikitin A. Y. Nonradiative    recombination in Quantum Dots GaN/AlN. Proceedings of the 6th All-Russian Conference "Gallium, Indium and Aluminum Nitrides-structures and Instrumentation». 2008, June 18-20. Saint-Petersburg. Yoffe Physical and Technical  Institute of Russian Academy of Sciences. P.210-211. (In Russian)

5. Gutzeit E. M. Tekhnika  probory sverkhvysokikh chastot [Technique and Devices of Ultra-High Frequencies]. Moscow. Radio i Svyaz’ Publ. 1994. 224p.  (In Russian)

6. Shlifer E. D. Electro-Vacuum Microwave Devices M-type, coaxial and       reversed-coaxial Magnetrons. Itogi nauki I tekhniki. Seriya Elektronika. Tom 17  - Results of science and technology. Ser. Electronics. Vol. 17. Moscow. VINITI, 1985. P. 169-209. (In Russian)

7. Sizov V. S., Gutkin A. A., Sakharov A.V., Lundin V. V., Brunkov P. N.,      Tsatsulnikov A. F. Phase Separation and Nonradiative Carrier Recombination in Active Regions of LightEmitting Devices Based on InGaN Quantum Dots in a GaN or AlGaN Matrix. Semiconductors.  2009, Vol. 43,  No .6. P. 807-811. DOI: 10.1134/S1063782609060220

8. Gutzeit E. M. Quantum Stars in the lighting sky. Svetotekhnika - Light Engineering. 2010. No. 1. P. 25-27. (In Russian)

9. Gutzeit E. M., Kurushin A. A. LED modules with electrodynamic-systems. Journal of Communications Technology and Electronics. 2010. Vol. 55. No. 8. P. 938-954. DOI: 10.1134/S1064226910080139

 

For citation:

Kurushin A.A. Designing LED modules. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 12. Available at http://jre.cplire.ru/jre/dec19/12/text.pdf

DOI  10.30898/1684-1719.2019.12.12