"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2019

contents of issue      DOI  10.30898/1684-1719.2019.12.8    full text in Russian (pdf)  

ÓÄŹ 621.369.9

Numerical-analytical model of backscattering coefficient of pure lake ice in C-band


K. V. Muzalevskiy 1, I. N. Yeltsov 2, A. N. Faguet 2, L. V. Tsibizov 2, D. E. Ayunov 2

 1 Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, Russia

 2 Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, Koptug ave. 3, Novosibirsk, Russia


 The paper is received on November 11, 2019


Abstract. In this paper, we propose a numerical-analytical model for diffuse scattering waves in C-band by a random layered-inhomogeneous medium of the pure lake ice cover, taking into account the reflection of the wave from the plane ice-water boundary. The created model allows calculating the scattering coefficient from the ice cover depending on the correlation length and the average volumetric value of air bubbles in ice. It was assumed that the average volumetric content of air bubbles does not depend on the thickness of the ice. Testing of the proposed model was performed for one of the lakes located in the Lena River Delta, using Sentinel-1 satellite backscattering data on HH-pol and surface air temperature data from September 2017 to June 2018. Surface air temperature data were used to estimate the ice thickness based on the Lebedev's empirical model describing the relationship between the ice thickness and the sum of the absolute values of the negative air temperatures, taking into account the thickness of the snow cover. The proposed model with  RMSE = 0.2dB and the  R2 = 0.960 describes the Sentinel-1 measured temporal dependences of the backscattering coefficient during of increasing of the ice thickness (0-2m) in the test site of the lake. In addition, the created model allows predicting the ice thickness with the error of RMSE = 17.6 cm and R2 = 0.811, determining both the total value and the absolute values of the surface air temperature from the moment of ice formation on the lake from Sentinel-1 radar data with an error of RMSE = 158,9°C days (R2 = 0.984) and RMSE = 6.0°C (R2 = 0.59), respectively. The proposed method does not take into account the effect of vertical heterogeneity of the porosity and ice structure, roughness of the air-ice, ice-water, and interlayer boundaries in ice. An a priori knowledge of the value of mean porosity of the sensing ice with an error of about 1% is essential. This information can be obtained from a statistical analysis of ground-based measurements. The proposed methodology needs further verification on a larger number of test tundra lake sites.

Key words: radio-location, fresh lake ice, radar scattering model, ice thickness, air temperature.


1.    GCOS. The Global Observing System for Climate: Implementation Needs, GCOS-200; GCOS 2016 Implementation Plan. World Meteorological Organization: Geneva, Switzerland, 2016, 315 p.

2.    Benson B.J., Magnuson J.J., Jensen O.P., Card V.M., Hodgkins G., Korhonen J., et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Climatic Change, 2012, No.112. P.299–323. Available at: https://doi.org/10.1007/s10584-011-0212-8

3.    Derksen C., Burgess D., Duguay C., Howell S., Mudryk L., Smith S., Thackeray C. and Kirchmeier-Young M. Changes in snow, ice, and permafrost across Canada. Chapter 5 in Canada’s Changing Climate Report, edited by E. Bush and D.S. Lemmen. Government of Canada, Ottawa, Ontario, 2018, pp.194–260.

4.    Kouraev A.V., Semovski S.V., Shimaraev M.N., Mognard N.M., et al. Observations of lake Baikal ice from satellite altimetry and radiometry. Remote Sensing of Environment, 2007, Vol.108. P.240–253.

5.    Kang K.-K., Duguay, C.R., Howell S.E.L. Estimating ice phenology on large northern lakes from AMSR-E: Algorithm development and application to Great Bear Lake and Great Slave Lake, Canada. The Cryosphere. 2012. Vol. 6. P.235–254.

6.     Kang K.-K., Duguay C.R., Lemmetyinen J., Gel Y. Estimation of ice thickness on large northern lakes from AMSR-E brightness temperature measurements. Remote Sens. Environ. 2014. Vol.150. P.1–19.

7.    Hachem S., Duguay C. R., Allard M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere. 2012. No.6. P.51-69.

8.    Pour H.K., Duguay C.R., Scott A., Kang K.-K. Improvement of lake ice thickness retrieval from MODIS satellite data using a thermodynamic model. IEEE Trans. Geosci. Remote Sens. 2017. Vol.55. P.5956–5965.

9.    Fletcher K. Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services, ESA SP-1322/1. 2012. 96 p.

10.   Observation Scenario [online]. Available at: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario/acquisition-segments.

11.  Sellmann P., et al. Use of side-looking airborne radar to determine lake depth on the Alaskan North Slope. Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. 1975. AD-A011 249. NTIS Special Report 230. 14 p.

12.  Mellor J. C. Bathymetry of Alaskan arctic lakes: a key to resource inventory with remote-sensing methods. Ph.D.thesis. Fairbanks, AK: Institute of Marine Science, University of Alaska, 1982.

13.  Jeffries M. O., Morris K., Weeks W.F., Wakabayashi H. Structural and stratigraphic features and ERS 1 synthetic aperture radar backscatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991–1992. J. Geophys. Res. 1994. Vol. 99. P. 22459–22471.

14.  Hoekstra P., Delaney A. Dielectric properties of soils at UHF and microwave frequencies. J. Geophys. Res. 1974. Vol. 79. P. 1699-1708.

15.  Mironov V.L., Kosolapova L.G, Lukin Y.I., Karavaysky A.Y., Molostov I.P. Temperature- and texture-dependent dielectric model for frozen and thawed mineral soils at a frequency of 1.4GHz. Remote Sensing of Environment. 2017. Vol. 200. P. 240-249.

16.  Surdu C.M., Duguay C.R., Pour H.K., Brown L.C. Ice freeze-up and break-up detection of shallow lakes in Northern Alaska with spaceborne SAR. Remote Sens. 2015. Vol. 7. P. 6133–6159.

17.  Howell S.E.L., Brown L.C., Kang K.-K., Duguay C.R. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000–2006. Remote Sensing of Environment. 2009. Vol.113. P.816–834.

18.  Surdu C. M., Duguay C.R., Fernández Prieto D. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations. The Cryosphere. 2016. Vol. 10. P. 941–960.

19.  Murfitt J., Brown L.C., Howell S.E. Evaluating RADARSAT-2 for the Monitoring of Lake Ice Phenology Events in Mid-Latitudes. Remote Sens. 2018. Vol. 10. P. 1641.

20.  Wang J., Duguay C.R., Clausi D.A., Pinard V., Howell S.E.L. Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery. Remote Sens. 2018. Vol. 10. P. 1727.

21.  Murfitt J.C., Brown L.C., Howell S.E.L. Estimating lake ice thickness in Central Ontario. PLoS ONE. 2018. Vol. 13(12): e0208519. Available at: https://doi.org/10.1371/journal.pone.0208519 

22.  Beckers J.F., Casey J.A., Haas C. Retrievals of lake ice thickness from Great Slave Lake and Great Bear Lake using CryoSat-2. IEEE Trans. Geosci. Remote Sens. 2017. Vol. 55. P. 3708–3720.

23.  Gherboudj I., Bernier M., Leconte R. A backscatter modeling for river ice: Analysis and numerical results. IEEE Trans. Geosci. Remote Sens. 2010. Vol. 48. No. 4. P. 1788–1798.

24.  Kozlenko N., Jeffries M. Bathymetric Mapping of Shallow Water in Thaw Lakes on the North Slope of Alaska with Spaceborne Imaging Radar. Arctic. 2000. Vol. 53. No. 3. P. 306-316.

25.  Wakabayashi H., Weeks W. F., Jeffries M. O. A C-band backscatter model for lake ice in Alaska. Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium. 1993. P. 1264-1266.

26.  Jeffries M.O., Morris K., Kozlenko N. Ice Characteristics and Processes, and Remote Sensing of Frozen Rivers and Lakes. Remote Sensing in Northern Hydrology: Measuring Environmental Change. AGU. 2015. Vol. 163. 160 p.

27.  Gunn G., Duguay C., Atwood D., King J., Toose P. Observing scattering mechanisms of bubbled freshwater lake ice using polarimetric RADARSAT-2 (C-band) and UWScat (X-, Ku-band). IEEE Trans. Geosci. Remote Sens. 2018. Vol. 56. P. 2887–2903.

28.   Atwood D. K., Gunn G. E., Roussi C., Wu J., Duguay C. R., Sarabandi K. Microwave backscatter from Arctic lake ice and polarimetric implications. IEEE Trans. Geosci. Remote Sens. 2015. Vol. 53. No. 11. P. 5972–5982.

29.  Yamaguchi Y., Moriyama T., Ishido M., Yamada H. Four component scattering model for polarimetric SAR image decomposition.  IEEE Trans. Geosci. Remote Sens. 2005. Vol. 43. No. 8. P. 1699–1706.

30.  Wu J., Atwood D., Sarabandi K. Scattering phenomenology of Arctic lake ice,” Proc. Geosci. Remote Sens. Symp. 2016. P. 3668–3671.

31.  Inada T., Hatakeyama T., Takemura F. Gas-storage ice grown from water containing microbubbles. Int. J. Refrig. 2009. Vol. 32. No. 3. P. 462–471.

32.  Engram M., Anthony K. W., Meyer F. J., Grosse G. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice. Can. J. Remote Sens. 2012. Vol. 38. No. 6. P. 667–682.

33.  Engram M., Anthony K. W., Meyer F. J., Grosse G. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska. The Cryosphere. 2013. Vol. 7. No. 6. P. 1741–1752.

34.   Mermoz S., Allain-Bailhache S., Bernier M., Pottier E., Van Der Sanden J. J., Chokmani K. Retrieval of River Ice Thickness From C-Band PolSAR Data. IEEE Transactions on Geoscience and Remote Sensing. 2014. Vol. 52. No. 6. P. 3052-3062.

35.  Cloude S. R., Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing. 1997. Vol. 35. No. 1. P. 68-78.

36.  Wegmüller U., Santoro M., Werner C., Strozzi T., Wiesmann A. Estimation of ice thickness of tundra lakes using ERS - ENVISAT cross-interferometry. IEEE International Geoscience and Remote Sensing Symposium. 2010. P. 316-319. DOI: 10.1109/IGARSS.2010.5649026

37.  Dammann D.O., Eriksson L.E.B., Mahoney A.R., Stevens C.W., Van der Sanden J., Eicken H., Meyer F.J., Tweedie C.E. Mapping Arctic Bottomfast Sea Ice Using SAR Interferometry. Remote Sens. 2018. Vol. 10. P. 720.

38.  Dammann D. O., Eriksson L. E. B., Mahoney A. R., Eicken H., Meyer F. J. Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry. The Cryosphere. 2019. Vol. 13. P. 557–577.

39.  Du J., Watts J.D., Jiang L., Lu H., Cheng X., Duguay C., Farina M., Qiu Y., Kim Y., Kimball J.S., Tarolli P. Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sens. 2019. Vol. 11. P. 1952.

40.  Lebedev V.V. Ice growth in Antarctic rivers and seas depending on negative air temperatures. Problemy Arktiki –Atctics Problems. 1938. Vol. 5-6. P. 9-25. (In Russian)

41.  Bilello M.A. Formation, Growth, and Decay of Sea-Ice in the Canadian Arctic Archipelago. Arctic. 1961. Vol. 14. No. 1. P. 2–24. Available at: www.jstor.org/stable/40506892.

42.  Birchak J. R., Gardner C. G., Hipp J. E., Victor J. M. High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE. 1974. Vol. 62. No. 1. P. 93-98.

43.  Fujita S., Matsuoka T., Ishida T., Matsuoka K., Mae S. A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. International Symposium on Physics of Ice Core Records. 2000. P. 185-212.

44.  Brekhovskikh L.M. Waves in Layered Media. NewYork, NY, USA. Academic. 1960. Š. 561.

45.  Chen M.F., Bai S.Y. Computer Simulation of Wave Scattering from a Dielectric Random Surface in Two Dimensions-Cylindrical Case. Journal of Electromagnetic Waves and Applications. 1990. Vol. 4. No. 10. P. 963-982.

46.  Tsang L., Kong J., Ding K. Scattering of Electromagnetic Waves: Theories and Applications. Wiley-Interscience. 2000. 436 p.

47.  Basharinov A.E., Gurvich A.S., Egorov S.T. Radioizluchenie Zemli kak planety. [Radio emission of the Earth as a planet]. Moscow. Nauka Publ. 1974. 188 p. (In Russian)

48.  Antonova S., Duguay C.R., Kääb A., Heim B., Langer M., Westermann S., Boike J. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series. Remote Sens. 2016. Vol. 8. P. 903.

49.  Kim Y.-S., Onstott R., Moore R. Effect of a snow cover on microwave backscatter from sea ice. IEEE Journal of Oceanic Engineering. 1984. Vol. 9. No. 5. P. 383-388.


For citation:
Muzalevskiy K.V., Yeltsov I.N., Faguet A.N., Tsibizov L.V., Ayunov D.E. Numerical-analytical model of backscattering coefficient of pure lake ice in C-band. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 12. Available at http://jre.cplire.ru/jre/dec19/8/text.pdf

DOI  10.30898/1684-1719.2019.12.8