"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2019

contents of issue      DOI  10.30898/1684-1719.2019.12.9   full text in Russian (pdf)  

ÓÄÊ 621.385.624

Optimization of structure and output parameters of a power broad-band two-barrel klistron for deep space communication systems

 

V. A. Tsarev 1,2, D. A. Nesterov 1

1 Yuri Gagarin Saratov State Technical University, Politechnicheskaya str., 77, Saratov 77410054, Russia

2JSC “R&D “Almaz”, Panfilova, 1, Saratov 410033, Russia

 

 The paper is received on November 22, 2019

 

Abstract. The article presents the results of computational modeling for double-beam X-band klystron designed to use in the deep space communications system transmitters. As a result of performed calculations in 1D program “AJDISK”, it was established that the new device at an accelerating voltage of 16 kV can provide the following output parameters: CW output power level - 24 kW, an efficiency - 33%, a bandwidth - 90 MHz and a gain - 44 dB. A structural feature of the intermediate resonators is the using of metal rods to create a defect in the resonator, by analogy with the photonic crystal resonators (PBG). The intermediate resonators were tuned to an intended resonant frequency by changing a diameter and a location of these rods in the defect zone.

Keywords: ground deep space communication, X-band, two-barrel klystron, 3D modeling, photonic band gap resonator, efficiency, amplification band.

References

1.       Bin Shen, Yaogen Ding, Sandalov A.N., Chashurina A.N. Computer simulations of 100 kW L-band CW broadband multi-beam klystron. IEEE Transaction on Electron Devices. 2005. No 5. P. 889. DOI: 10.1109/IVESC.2004.1414252.

2.       Nusinovich G., Levush B., Abe. D. A Review of the Development of Multiple-Beam Klystrons and TWTs USA, McLean: Naval Research Laboratory, 2003, 45 p. Available at: URL https://www.researchgate.net/publication /235166704_A_Review_of_the_Development_of_Multiple-Beam_Klystrons_ and_TWTs (date of access 24.10.2019).

3.       Borisov L., Schelkunov G. Power and Super High Power Microwave Sources: From Klystrons to a New Class of Devices. Elektronika NTB – Electronics STB. 2012., No 4. P. 58-64. Available at: http://www.electronics.ru/files/article_pdf/3/article_3288_906.pdf (date of access 24.10.2019) (In Russian)

4.       Pat. 2483386, RU, IPC7 H 01 J 25/00, High-power broadband klystron. V.A. Tsarev, V.I. Shirshin, V.V. Mullin, V.K. Semenov, P.A. Pichugin – publ. 27.05.13 in bul. No 15. URL: http://www.freepatent.ru/patents/2483386 (date of access 24.10.2019).

5.       Vodonos Ya. I., Conroy B.L., Losh D.L., Silva A. Advances in Ground Transmitters for the NASA Deep Space. Proceedings of the IEEE. 2007. No 10. P. 1945-1957. DOI: 10.1109/JPROC.2007.905050.

6.       Tsarev V.A., Shirshin V.I. High-power broadband amplification X-band klystron with an output continuous power of 12,5 kW. Elektronnaya tehnika. Seriya 1: SVCH-tehnika – Electronic engineering. Series 1: Microwave engineering. 2013. No 3(518). P. 101-107. (In Russian)

7.       Vicente C., Gahete C. Feasibility Study of an All European Klystron for Deep Space Communications [online]. ESA.INT. European Space Agency. Available at: URL: http://gsp.esa.int/documents/10192/43064675/C102484ExS.pdf/ 9be696e0-cb4c-446e-91a1-7d668380626d (date of access 24.10.2019).

8.       Microwave Power Products Division [online]. CPII.COM. Communication & Power Industries. Available at: URL: http://www.cpii.com/product.cfm/1/20/48 (date of access 24.10.2019).

9.       Touv A.A. X-Band high power broadband low-voltage multi-beam klystron amplifier with two-barrel design. Proceedings of International University Conference “Electronics and Radiophysics of Ultra-High Frequencies”. St. Petersburg. May 1999. P. 83-85. DOI: 10.1109/UHF.1999.787884.

10.  Touv A.A. 3-cm high-power broadband low-voltage multi-beam amplification double-barrel klystron. Radiotehnika – Radio Engineering. 2000. No 2. P. 51-53. (In Russian)

11.  Muchkaev V.Yu., Tsarev V.A. REZON. Certificate of official registration of computer program No 2011611748, 24.02.2011. 1 p. (In Russian)

12.  Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev.Lett. 1987. Vol. 58. No. 20. P.2059-2062. DOI: 10.1109/UHF.1999.787884.

13.  Sirigiri J.R., Kreischer K.E., Machuzak J., Mastovsky I. Photonic-band-gap resonator gyrotron. Phys. Rew. Lett. 2001. Vol. 86. No 24. P.5628-5631. DOI: 10.1103/PhysRevLett.86.5628.

14.  Shapiro M.A., Brown W.J., Mastovsky I., Sirigiri J.R., Temkin R.J. 17 GHz photonic band gap cavity with improved input coupling. Phys. Rev. ST Accel. Beams. 2001. Vol. 4. P.7. DOI:  10.1103/PhysRevSTAB.4.042001.

15.  Robak S., Boyden D., Shin Y.-M. RF-components embedded with photonic-band-gap (PBG) and fishnet-metamaterial structures for high frequency accelerator application. Proceedings of PAC2013. Pasadena, CA USA, Convention center, Pasadena, 29 Sept. - 4 Oct. 2013. P. 102-104. URL: https://arxiv.org/ftp/arxiv/papers/1502/1502.02064.pdf (date of access 24.10.2019).

16.  Jensen Aaron, Fazio Michael, Neilson Jeffrey, Scheitrum Glenn. Developing sheet beam klystron simulation capability in AJDISK. IEEE Trans. Electron Devices. 2014. Vol. 61.  No 6. P.1666-1671. DOI: 10.1109/TED.2014.2298753.

 

For citation:

Tsarev V.A., Nesterov D.A. Optimization of structure and output parameters of a power broad-band two-barrel klistron for deep space communication systems. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 12. Available at http://jre.cplire.ru/jre/dec19/9/text.pdf

DOI  10.30898/1684-1719.2019.12.9