Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.12.14

UDC 621.385.624

 

Nonlinear processes in the bunched electron beams of high-power klystrons and the limits of analytical and one-dimensional numerical models applicability for their analysis

 

V. Y. Rodyakin 1, V. M. Pikunov 1, V. N. Aksenov 1, 2

1 Institute of Laser and Information Technologies —Branch of the Federal Scientific Research Centre «Crystallography and Photonics» of RAS, 140700 Shatura, Svyatoozerskaya Str, 1

2 Physics Department and International Laser Center Lomonosov Moscow State University, 119991, Moscow, Leninskie Gory, 1


The paper is received on December 14, 2020

 

Abstract. We present the results of a comparative theoretical analysis of the electron beam bunching  in a single-stage klystron amplifier using analytical models, a one-dimensional disk program, and a two-dimensional program. Data on the influence of various one-dimensional and two-dimensional nonlinear effects on the efficiency of electron beam bunching  at different values of the space charge parameter and the modulation amplitude are presented. The limits of applicability of analytical and one-dimensional numerical models for electron beam bunching  analysis in high-power klystron amplifiers are found.

Key words: electron beam, klystron, electron bunching, computer code PARS, interaction region, space charge waves, reduced plasma frequency, potential depression, velocity modulation, harmonic current.

References

1. CST STUDIO SUITE. Electromagnetic field simulation software [online]. URL: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

2. Goplen B., Ludeking D., Smithe D., Warren G. User-configurable MAGIC code for electromagnetic PIC calculation. Comput. Phys. Commun. 1995. Vol.87. P.54-86.

3. Kosmahl H.G., Branch G.M., Generalized representation of electric fields in interaction gaps of klystrons and traveling-wave tubes. IEEE Trans. on ED. 1973. Vol.20. No.7. P.621-629.

4. Mihran T.G.  Plasma frequency and velocity spread in bunched electron beams of finite diameter.  J. Appl. Phys. 1967. Vol.38. P.159.

5. Webster D.L.  The theory of klystron oscillations. J. of Appl. Phys. 1939. Vol.10. P.864.

6. Saveliev V.K. On the theory of a klystron. Zhurnal Technicheskoy Fyziki [J.Tech. Phys.]. 1940. Vol.10. P.1365. (In Russian)

7. Wallander S.O. Large signal analytical study of bunching in klystrons. IEEE Trans. on ED. 1968. No.8.P.595.

8. Kanavets V.I., Sandalov A.N. 1D model research of multi-cavity klystron with additional influence of second harmonic. Electronnaya Technika. Electronika SVCh [Electronics. MW Electronics]. 1971. No.3. P.11-20. (In Russian)

9. Sandalov A.N., Rodyakin V.E. Computer code for analysis of electron beam dynamics in the klystron. In: “Voprosy electronnoy techniki”. [Issues of electronic technology]. Saratov, 1988, 15 p. (In Russian)

10. Rodyakin V.E., Pikunov V.M., Aksenov V.N. Computer code for numerical analysis of klystron type vacuum electronic devices. Zhurnal radioelektroniki [Journal of Radio Electronics]. 2019. No.6. 21 p. https://doi.org/10.30898/1684-1719.2019.6.4 (In Russian) 

11. Webber S.E. Ballistic analysis of a two cavity finite klystron. IREE Trans. on ED. 1958. Vol.5. P.58.

12. Mihran T.G., Branch G.M., Griffin G.J. Electron bunching and output gap interaction in broad-band klystrons. IEEE Tr. on ED. 1972. Vol.19. No.9. P.1011-1017.

13. Kanavets V.I., Lopuchin V.M., Sandalov A.N. Nelineynye processy v moshnych mnogorezonatornych klystronach I optimizatsya ich parametrov. Lektsyi po electronike SVCH. (3 zimnia shkola-seminar inzhenerov), kniga VII [Nonlinear processes in the high power multiple-cavity klystrons and their parameters optimization. Lectures on microwave electronics (3rd winter school-seminar of engineers), book VII]. Saratov, Saratov State University  Publ. 1974. 253 p. (In Russian)

14. Rodyakin V.Y., Pikunov V.M., Aksenov V.N., Ovsyannikov N.E. Limitations on current of a solid axially symmetric electron beam in the drift tubes of millimeter-wave vacuum electronic devices. Bulletin of the Russian academy of sciences: Physics. 2020. Vol.84. Issue 1, P.102-106. https://doi.org/10.3103/S1062873820010219

15. Rodyakin V.E., Pikunov V.M., Aksenov V.N. Interaction region of W-band high power extended interaction klystron. Zhurnal radioelektroniki [Journal of Radio Electronics]. 2020. No.6. https://doi.org/ 10.30898/1684-1719.2020.6.4 (In Russian)

16. Borodenko V.G., Vedyashkina K.A., Zernova M.S. Mechanism for limiting beam bunching in klystrons. Electronnaya Technika. Electronika SVCh [Electronics. MW Electronics]. 1977. No.10. P.3. (In Russian)

 

For citation:

Rodyakin V.E., Pikunov V.M., Aksenov V.N. Nonlinear processes in the bunched electron beams of high-power klystrons and the limits of analytical and one-dimensional numerical models applicability for their analysis. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.12. https://doi.org/10.30898/1684-1719.2020.12.14  (In Russian)