Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.12.18

UDC 620.3

 

FUNDAMENTALS OF THE MECHANICAL ASSEMBLING BOTTOM-UP OF INDIVIDUAL NANOOBJECTS AND NANODEVICES FOR THE INVESTGATIONS OF THE QUANTUM NON-LOCAL PHENOMENA, NANOELECTRONICS AND BIOMEDICAL DIAGNOSTICS

 

 V. V. Koledov1, V. G. Shavrov1, S. V. von Gratovsky1, P. V. Lega1, . S. Ilin1, A. P. Orlov1, A. V. Frolov1, A. V. Prokunin1, M. S. Bybik1, M. . Cotta2, A. V. Irzhak3,4, D. N. Nath4, A. Ghosh4, P .Kumar4, C. Coleman5, S. Bhattacharyya5, Z. Zeng6

 

Kotelnikov  Institute of Radioengineering and Electronics of RAS,  Mokhovaya st, 11-7, Moscow 125009, Russia

2 University of Campinas Gleb Wataghin Physics Institute Campinas, SP, R. Sérgio Buarque de Holanda, 777 - Cidade Universitária, Campinas - SP, 13083-859, Brazil

3 Institute of Problems of Technology of Microelectronics and Pure Materials of RAS, Acad. Osipyana str., 6, Chernogolovka, Moscow Region 142432, Russia

4 Centre for Nano Science and Engg (CeNSE) Indian Institute of Science (IISc) Bangalore, Indian Institute of Science, near D Gate, Mathikere, Bengaluru, Karnataka 560012, India

5 Nano-Scale Transport Physics Laboratory, School of Physics, University of the Witwatersrand, Johannesburg, South Africa, Private Bag 3, Wits 2050, South Africa

6 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO), No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, China


The paper is received on November 1, 2020

 

Abstract. In this work we give an overview of researches, conducted in the framework of the project RFBR-BRICS, together with groups from Brazil, Russia, India, China and South Africa on the development of new technology nanoassembly bottom-up various devices for nanoelectronics, nanosensors, biomedicine and basic research based on the use of new functional materials with phase transitions and new physical effects. The Russian group carried out work on improving the nanomanipulation system based on nanotweezers made of Ti2NiCu alloy with shape memory effect. A new design of the control system is proposed, which reduces the control power of the resistive heater and reduces the uncontrolled drift of the nanotweezers by up to 5 times. In the process of joint technological, design and physical research in the field of nanomanipulation and nanoassembly technology, the following main results were obtained by the participating groups. The Indian group, together with the Russian group, studied the melting processes at the micro-level of dimensions, and showed the possibility of manipulating a drop of molten gallium with the help of electromigration and the formation of contact chains for nanoassembly without the use of lithography. Also, the Russian and Indian groups studied the possibility of individual manipulation of microparticles in the liquid. The Chinese group, together with the Russian one, manufactured and tested a prototype of a spin-injection microwave electromagnetic oscillator for nanosensory applications. The Russian and South African groups produced "bottom-up" nanoassembly of carbon nanomaterials, such as CNT, decorated with magnetic ions and nanodiamonds ring structures, and they were searched for quantum effects such as quantum oscillations of transport properties and superconductivity. The Brazilian, Chinese and Russian groups jointly produced prototypes of nano-bio-sensors based on field-effect transistors made of suspended semiconductor nanowires using the bottom-up nanosembly method. Two original approaches to nanoassembly were used: a variant of the traditional scheme with liquid transportation of nanowires and an approach based on three-dimensional manipulation using the nanotweezers with a shape memory effect.

Key words: nanoassembly bottom-up, nanotweezers, carbon nanotubes (CNT), nanowires, nanoparticles, quantum interferometers, field effect nanotransistors, bionanosensors.

References

1. Giljohann D.A., Mirkin C.A. Drivers of biodiagnostic development. Nature. 2009. Vol.462. P.461464.

2. Turner A.P.F. Biosensors: sense and sensibility. Chem. Soc. Rev. 2013. Vol.42. P.31843196.

3. Lequin R.M. Enzyme immunoassay EIA/enzyme-linked immunosorbent assay. ELISA. Clin Chem. 2005. Vol.51. P.24152418.

4. Heller M.J. DNA microarray technology: devices, systems, and applications. Annual Rev. Biomed. Eng. 2002. Vol.4. P.129153.

5. Khoodoo M.H.R., Sahin F., Donmez M.F., Jaufeerally F., Fakim Y. Molecular characterisation of xanthomonas strains isolated from aroids in mauritius. Syst.Appl. Microbiol. 2005. Vol.28. P.366380.

6. GaoN., Zhou W., Jiang X., Hong G., Fu T., Lieber C.M. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Letters. 2015. Vol.15. No.3. P.2143-2148.

7. Janissen R., Sahoo P.K., Santos CA., da Silva A.M., von Zuben A.A., Souto D.E., Cotta M. et al. InP nanowire biosensor with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Letters. 2017. Vol.17. No.10. P.5938-5949.

8. Duan X., Huang Y., Cui Y., Wang J., Lieber C.M., et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 2001. Vol.409 (6816). P.66.

9. Maedler C., Kim D., Spanjaard R.A., Hong M., Erramilli P.M. Sensing of the melanoma biomarker TROY using silicon nanowire field-effect transistors. ACS Sensors. 2016. Vol.1. P.696701.

10. Patolsky F., Zheng G., Lieber C.M. Nanowire-based biosensors - analytical chemistry ACS publications. Anal. Chem.. 2006. Vol.78. P.42604269.

11. Teo B.K., Sun X.H. From top-down to bottom-up to hybrid nanotechnologies: road to nanodevices. Journal of Cluster Science. 2006. Vol.17. No.4. P.529-540.

12. Chiaramonte T., Tizei L.H., Ugarte D., Cotta M.A. Kinetic effects in InP nanowire growth and stacking fault formation: the role of interface roughening. Nano Letters. 2011. Vol.11. No.5. P.1934-1940.

13. Oliveira D.S., Tizei L.H.G., Ugarte D., Cotta M.A. Spontaneous periodic diameter oscillations in InP nanowires: the role of interface instabilities. Nano Letters. 2012. Vol.13. No.1. P.9-13.

14. de Godoy M.P., Nakaema M.K.K., Iikawa F., Lopes J.M.J., Bortoleto J.R.R., Fichtner P.F.P. Structural and optical properties of InP quantum dots grown on GaAs (001). Journal of Applied Physics. 2007. Vol.101. No.7. P.073508.

15. Irzhak A., Koledov V., Zakharov D., Lebedev G., Mashirov A., Afonina V., Shelyakov A., et al. Development of laminated nanocomposites on the bases of magnetic and non-magnetic shape memory alloys: towards new tools for nanotechnology. Journal of Alloys and Compounds. 2014. Vol.586. P.S464-S468.

16. Irzhak A.V., Zakharov D.I., Kalashnikov V.S., Koledov V.V., Kuchin D.S., Lebedev G.A., Tarasov I.S., et al. Actuators based on composite material with shape-memory effect. Journal of Communications Technology and Electronics. 2010. Vol.55. No.7. P.818-830.

17. Zakharov D., Lebedev G., Koledov V., Lega P., Kuchin D., Irzhak A, Shelyakov A., et al. An enhanced composite scheme of shape memory actuator for smart systems. Physics Procedia. 2010. Vol.10. P.58-64.

18. Kuchin D.S.,, Lega P.V., Orlov A.P., Koledov V.V., Kuchin D.S., Irzhak A.V., et al. The smallest and the fastest shape memory alloy actuator for micro-and nanorobotics. Proceedings of International Conference Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE. 2017. July. P.1-4.

19. Koledov V., Shavrov V., von Gratowski S., Petrenko S., Irzhak A., Shelyakov A., et al. Practical system for nanomanipulation. Proceedings of International Conference Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE. 2014, October. P.316-320.

20. von Gratowski S., Koledov V., Shavrov V., Petrenko S., Irzhak A., Shelyakov A., et al. Advanced system for nanofabrication and nanomanipulation based on shape memory alloy. Proceedings of International Conference Frontiers in Materials Processing, Applications, Research and Technology. Springer, Singapore. 2018. P.135-154.

21.Sidorov V.A., Ekimov E.A. Superconductivity in diamond. Diamond and Related Materials. 2010. Vol.19. No.5-6. P.351-357.

22.Ekimov E. A., Sidorov V. A., Bauer E. D., Mel'nik N.N., Curro N.J., Thompson J.D., Stishov S.M. Superconductivity in diamond. Nature. 2004. Vol.428 No.6982. P.542.

23.Ward A., Broido D.A., Stewart D.A., Deinzer G. Ab initio theory of the lattice thermal conductivity in diamond. Physical Review B. 2009. Vol.80. No.12. P.125203.

24.Zhang G., Janssens S.D., Vanacken J., Timmermans M., Vacek J., Ataklti G.W., Wagner P. et al. Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD. Physical Review B. 2011. Vol.84. No.21. P.214517.

25.Coleman C., Bhattacharyya S. Possible observation of the Berezinskii-Kosterlitz-Thouless transition in boron-doped diamond films. AIP Advances 7. 2017. P.115119.

26.Mtsuko D., Coleman C., Bhattacharyya S. Finite bias dependent evolution of superconductor-insulator transition in nanodiamond films. arXiv preprint arXiv:1606.06672. 2016.

27.Bhattacharyya S., Coleman C., Mtsuko D., Churochkin D. Non-s wave superconductivity in boron-doped nanodiamond films with 0-π Josephson junction array. arXiv preprint arXiv:1710.05170. 2017.

28.Takano Y., Nagao Y., Sakaguchi I., Tachiki M., Hatano T., Kobayashi K., Kawarada H. Superconductivity in diamond thin films well above liquid helium temperature. Applied physics letters. 2004. Vol.85. No.14. P.2851-2853.

29.Vinokur V.M., Baturina T.I., Fistul M.V., Mironov A.Y., Baklanov M.R., Strunk C. Superinsulator and quantum synchronization. Nature. 2008. Vol.452. No.7187. P. 613.

30. Zhang G., Samuely T., Du H., Xu Z., Liu L., Onufriienko O., Yuan H. Bosonic confinement and coherence in disordered nanodiamond arrays. ACS nano. 2017. Vol.11. No.11. P.11746-11754.

31. Kumar S., Kumar P., Pratap R. A model for electromigration induced flow in liquid metals. Journal of Physics D: Applied Physics. 2017. Vol.50(39). P.39LT02.

32. Shao Y., Lv W., Guo J., Baotao Q., Lv W., Li S., Guo G., Zeng Z The current modulation of anomalous Hall effect in van derWaals Fe3GeTe2/WTe2 heterostructures. Appl. Phys. Lett. 2020. Vol.116. P.092401.

33. Zhang L., Cai J., Fang B., Zhang B., Bian L., Carpentieri M., Finocchio G., Zeng Z. Dual-band microwave detector based on magnetic tunnel junctions. Appl. Phys. Lett. 2020. Vol.117. P.072409.

34. Wu W., Zhang L., Cai J., Fang B., Luo J., Zeng Z. Magnetoresistance and spin-torque effect in flexible nanoscale magnetic tunnel junction. Appl. Phys. Lett. 2019. Vol.115. P.052401.

35. Cai J., Zhang L., Fang B., Lv W., Zhang B., Finocchio G., Xiong R., Liang S., Zeng Z. Sparse neuromorphic computing based on spin-torque diodes. Appl. Phys. Lett.. 2019. Vol.114. P 192402.

36. Bhattacharyya S., Mtsuko D., Allen C., Coleman C. Effects of Rashba-spinorbit coupling on superconducting boron-doped nanocrystalline diamond films: evidence of interfacial triplet superconductivity. New J. Phys. 2020. Vol.22. P.093039.

37. Ivey D.G. Platinum metals in ohmic contacts to III-V semiconductors. Platinum Metals Rev. 1999. Vol.43. No.1. P.2.

38. Jian P., Ivey D.G., Bruce R. et al. Ohmic contact formation in palladium-based metallizations to n-Type InP. JEM. 1994. Vol.23. P.53962. https://doi.org/10.1007/BF02655370

39. Ivey D.G, Jian P. Metallurgy of ohmic contacts to InP. Canadian Metallurgical Quarterly. 1995. Vol.34. No.2. P.85-113.

40. Janissen R., Sahoo P.K., Santos C.A., da Silva A.M., vonz Zuben,A.A.G., Souto D.E.P., Costa, A.D.T., Celedon P., Zanchin N.I.T., Almeida D.B., Oliveira D.S., Kubota L.T., Cesar C.L., Souza A.P., Cotta M.A. InP nanowire with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett. 2017. Vol.17. P.5938-5949.

 

For citation:

Koledov V.V., Shavrov V.G., von Gratovsky S.V., Lega P.V., Ilyin A.S., Orlov A.P., Frolov A.V., Prokunin A.V., Bybik M.S., Cotta M.A., Irzhak A.V., Nath D.N., Ghosh A.. Kumar P., Coleman C., Bhattacharyya S., Zeng Z. Fundamentals of the mechanical assembling bottom-up of individual nanoobjects and nanodevices for the investgations of the quantum non-local phenomena, nanoelectronics and biomedical diagnostics. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.12. https://doi.org/10.30898/1684-1719.2020.12.18. (In Russian)