Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.12.2

UDC 669.868:547.979.733:535.37:537.868

 

Magnetite nanoparticles as promising structures for magneto-luminescent theranostics of tumors

 

A. S. Gorshkova1,2, A. V. Ivanov3, I. P. Shilov2, V. D. Rumyantseva1,2

1 MIREA – Russian technological university, Vernadsky Avenue, 86, Moscow, 119571 Russia

2 Fryazino branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, acad. Vvedenskogo sq., 1, Fryazino, Moscow Region, 141190 Russia

3 N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh., 24, Moscow, 115478 Russia


The paper was received on December 2, 2020

 

Abstract. The synthesized nanoparticles based on magnetite have been investigated for magneto-luminescent theranostics of tumors. A magnetite core provides hyperthermia, IR-luminescent diagnostics due to the Yb(àñàñ)-complex of hematoporphyrin IX tetramethyl ether is carried out. It is shown that the magnetite core inclusion doesn’t lead to a significant decrease in the luminescence intensity of the Yb-complex in the synthesized nanocomposites.

Key words: nanocomposites, magnetite nanoparticles, magneto-luminescent theranostics, electromagnetic fields, hyperthermia.

References

1.     Dutz S., Hergt R. Magnetic particle hyperthermia – a promising tumour therapy? Nanotechnology. 2014. Vol.25. No.45. P.452001. Avaliable at: https://doi.org/10.1088/0957-4484/25/45/452001

2.     Golovin Y.I., Klyachko N.L., Majouga A.G., Efremova M.V., Veselov M.M., Vlasova K.Y., Usvaliev A.D., Le-Deygen I.M., Kabanov A.V., Gribanovskii S.L., Golovin D.Y., Zhigachev A.O., Shuklinov A.V. New Approaches to Nanotheranostics: Polyfunctional Magnetic Nanoparticles Activated by Non-Heating Low-Frequency Magnetic Field Control Biochemical System with Molecular Locality and Selectivity. Nanotechnologies in Russia. 2018. Vol.13. No.5–6. P.215–239. https://doi.org/10.1134/S1995078018030060

3.     Cheng S.H., Lee S.H. Chen M.-C., Souris J.S., Tseng F.-G., Yang C.-S., Mou C.-Y., Chen C.-T., Lo L.-W. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics – the trio of imaging, targeting and therapy. Journal of Materials Chemistry. 2010. Vol.20. No.29. P.6149–6157. https://doi.org/10.1039/C0JM00645A

4.     Bardhan R., Chen W. Bartels M., Perez-Torres C., Botero M.F., McAninch R.W., Contreras A., Schiff R., Pautler R.G., Halas N.J., Joshi A. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Letters. 2010. Vol.10. No.12. P.4920–4928. https://doi.org/10.1021/nl102889y

5.     Shilov I.P., Rumyantseva V.D., Alekseev Yu.V., Ivanov A.B. Ytterbium porphyrins complexes in luminescent diagnostics and theranostics of cancer. Bulletin of the Russian Academy of Sciences: Physics. 2020. Vol.84. No.11. P.1645–1649. https://doi.org/10.31857/S0367676520110253 (In Russian)

6.     Kurlyandskaya G.V., Bhagat S.M., Safronov A.P., Beketov I.V., Larrañaga A. Spherical magnetic nanoparticles fabricated by electric explosion of wire. AIP Advances. 2011. Vol.1. Art.042122. https://doi.org/10.1063/1.3657510

7.     Beketov I.V., Safronov A.P., Medvedev A.I., Alonso J., Kurlyandskaya G.V., Bhagat S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids. AIP Advances. 2012. Vol.2. Art.022154. https://doi.org/10.1063/1.4730405

8.     Ivanov A.V., Pevgov V.G. Methods for measuring the size and concentration of nanoparticles. Integral. 2011. No.3. P.69. (In Russian)

 

For citation:

Gorshkova A.S., Ivanov A.V., Shilov I.P., Rumyantseva V.D. Magnetite nanoparticles as promising structures for magneto-luminescent theranostics of tumors. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.12. https://doi.org/10.30898/1684-1719.2020.12.2  (In Russian)