Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 12
Contents

Full text in English (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.12.21

UDC 537.86+621.385.6

 

Generation of ultra-powerful microwave pulses in stretcher-amplifier-compressor systems

 

L. А. Yurovskiy, I. V. Zotova, E. B. Abubakirov, R. M. Rozental, A. S. Sergeev, N. S. Ginzburg

Institute of Applied Physics of the Russian Academy of Sciences, Ul’yanov str., 46, Nizhny Novgorod, 603950 Russia


The paper was received on December 24, 2020

 

Abstract. We theoretically investigate the possibility of generating ultra-high-power ultrashort microwave pulses based on the Chirped-Pulse Amplification (CPA) method, which is widely used in laser physics. This method includes preliminary elongation of the initial pulse in a stretcher, sequential amplification of spectral components in a broadband amplifier, and compression in a line with negative dispersion (compressor). We consider the scheme in which waveguides with multi-fold helical corrugation are used as dispersing elements (stretcher and compressor), and a relativistic Cherenkov TWT or helical gyro-TWT is used as an amplifier. For the parameters of experimentally realized amplifiers in the 30 GHz range, we show that the peak pulse power in the stretcher-amplifier-compressor system significantly exceeds not only the saturation level of the amplifier, but also more than 4 times higher than the power of the used electron beam.

Key words: ultrashort microwave pulses, compression of amplified chirped pulses, helical gyro-TWT, relativistic Cherenkov amplifier.

References

1. Strickland D., Mourou G. Compression of amplified chirped optical pulses.  Optics Communications. 1998. Vol.56. No.3. P.219-221. https://doi.org/10.1016/0030-4018(85)90120-8 

2. Lozhkarev V.V., Freidman G.I., Ginzburg V.N., Katin E.V., Khazanov E.A., Kirsanov A.V., Luchinin G.A., Mal'shakov A.N., Martyanov M.A., Palashov O.V., Poteomkin A.K., Sergeev A.M., Shaykin A.A. and Yakovlev I.V. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Physics Letters. 2007. Vol.4. No.6. P.421-427. https://doi.org/10.1002/lapl.200710008

3. Bratman V.L., Cross A.W., Denisov G.G., He W., Phelps A.D.R., Ronald K., Samsonov S.V., Whyte C.G., Young A.R. High-Gain Wide-Band Gyrotron Traveling Wave Amplifier with a Helically Corrugated Waveguide. Physical Review Letters. 2000. Vol.84. No.12. P.2746-2749. https://doi.org/10.1103/PhysRevLett.84.2746

4. Samsonov S.V., Gachev I.G., Denisov G.G., Bogdashov A.A., Mishakin S.V., Fiks A.S., Soluyanova E.A., Tai E.M., Dominyuk Y.V., Levitan B.A., Murzin V.N. Ka-Band Gyrotron Traveling-Wave Tubes With the Highest Continuous-Wave and Average Power. IEEE Transactions on Electron Devices. 2014. Vol.61. No.12, P.4264-4267. https://doi.org/10.1109/TED.2014.2364623

5. Abubakirov E.B., Konyushkov A.P., Leontyev A.N., Rozental R.M., Tarakanov V.P. Multi-pass relativistic traveling-wave tube with simultaneous operation on symmetric and asymmetric modes. Physics of Plasmas. 2020. Vol.27. No.7. P.073104-1/6. https://doi.org/10.1063/5.0006181

6. Shiffer D., Nation J.A., Kerslick G.S. A high-power traveling wave tube amplifier. IEEE Transactions on Plasma Science. 1990. Vol.18. No.3. P.546-552. https://doi.org/10.1109/27.55926

7. Cooke S.J., Denisov G.G. Linear theory of a wide-band gyro-TWT amplifier using spiral waveguide. IEEE Transactions on Plasma Science. 1998. Vol.26. No.3. P.519–530. https://doi.org/10.1109/27.700786

8. Ginzburg N.S., Yurovsky L.A., Vilkov M.N., Zotova I.V., Sergeev A.S., Samsonov S.V., Yakovlev I.V. Stretching, Amplification, and Compression of Microwave Pulses Using Helically Corrugated Waveguides. Radiophysics and Quantum Electronics. 2019. Vol.62. No.7-8. P.472-480. https://doi.org/10.1007/s11141-020-09993-z

9. Abubakirov E.B., Denisenko A.N., Fuks M.I., Kolganov N.G., Kovalev N.F., Petelin M.I., Savelyev A.V., Schamiloglu E., Soluyanov E.I., and Yastrebov V.V. An X-band gigawatt amplifier. IEEE Transactions on Plasma Science. 2002. Vol.30. No.3. P.1041-1052. https://doi.org/10.1109/TPS.2002.801601

10. Ginzburg N.S., Novozhilova Yu.V., Sergeev A.S., Peskov N.Yu., Zotova I.V., Phelps A.D.R., Cross A.W., Wiggins S.M., He W., Ronald K., Shpak V.G., Yalandin M.I., Shunailov S.A., Ulmaskulov M.R., Tarakanov V.P. Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime. Physical Review E. 1999. Vol.60. No.3. P.3297-3304. https://doi.org/10.1103/PhysRevE.60.3297

11. Korovin S.D., Eltchaninov A.A., Rostov V.V., Shpak V.G., Yalandin M.I., Ginzburg N.S., Sergeev A.S., Zotova I.V. Generation of Cherenkov superradiance pulses with a peak power exceeding the power of the driving short electron beam. Physical Review E. 2006. Vol.74. No.1. P.016501-1/8. https://doi.org/10.1103/PhysRevE.74.016501

 

For citation:

Yurovskiy L.A., Zotova I.V., Abubakirov E.B., Rozental R.M., Sergeev A,S., Ginzburg N.S. Generation of ultra-powerful microwave pulses in stretcher-amplifier-compressor systems. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.12. hhttps://doi.org/10.30898/1684-1719.2020.12.21