Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.12.7

UDC

 

Measuring errors of parameters of size, shape and color during automated screening of skin pigmented neoplasms

 

K G. Kudrin 1, E. N. Rimskaya 2, O. Yu. Pavlyukova 3, D. V. Davydov 1, I. V. Reshetov 1,4

1 Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamsk highway, 91, Moscow, 125371 Russia

2 Bauman Moscow state technical University, 2-ya Baumanskaya str., 5, p. 1, Moscow, 105005 Russia

3 Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya street, building 7, Moscow, 11 125009 Russia

4 I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, p. 2, Moscow, 119991 Russia


The paper is received on December 4, 2020

 

Abstract. The paper describes the features of measuring parameters of size, shape, and color in automated screening of melanoma and skin pigmented neoplasms. Based on the known clinical parameters of pigmented skin neoplasms a set of measured parameters are proposed. The allowable errors of measuring the linear parameters and area parameters using numerical parameters of size are determined. A factors that introduce random errors of measuring the linear parameters and area parameters by the body mapping are considered. Measuring errors of linear parameters and area parameters are estimated analytically. The measurement errors for color parameters of skin pigmented neoplasms by body mapping are presented. The possibility of automated screening of melanoma and skin pigmented neoplasms by body mapping are confirmed.

Key words: skin melanoma, early diagnosis, automated screening, clinical parameters, allowable errors, measurement errors, skin surface mapping.

References

1.      Eisemann N., Waldmann A., Geller A.C., Weinstock M.A., Volkmer B., Greinert R., Breitbart E.W., Katalinic A. Non-Melanoma Skin Cancer Incidence and Impact of Skin Cancer Screening on Incidence.  J. Invest. Dermatol. 2014. Vol.134. No.1. P.43. https://doi.org/10.1038/jid.2013.304.

2.     LeBoit P.E., Burg G., Weedon D., Sarasain A. Pathology and Genetics of Skin Tumours. World Health Organization Classification of Tumours. IARC Press: Lyon, 2006. 355 p.

3.     Shaikh W.R., Xiong M., Weinstock M. A. The contribution of nodular subtype to melanoma mortality in the United States, 1978 to 2007.  Arch. Dermatol. 2012. Vol.148. No.1. P.30. https://doi.org/10.1001/archdermatol.2011.264.

4.     Chen S.T., Geller A.C., Tsao H. Update on the epidemiology of melanoma.  Curr. Dermatol. Rep. 2013. Vol.2. No.1. Ð.24. https://doi.org/10.1007/s13671-012-0035-5.

5.     Nikolaou V., Stratigos A.J. Emerging trends in the epidemiology of melanoma.  British Journal of Dermatology. 2014. Vol.170. No.1. P.11. https://doi.org/10.1111/bjd.12492.

6.     Tsao H., Olazagasti J.M., Cordoro K.M., Brewer J.D., Taylor S.C., Bordeaux J.S., Chren M.M., Sober A.J., Tegeler C., Bhushan R., Begolka W.S. Early detection of melanoma: Reviewing the ABCDEs. Journal of the American Academy of Dermatology. 2015. Vol.72. No.4. P.717.

https://doi.org/10.1016/j.jaad.2015.01.025.

7.     Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2016. CA Cancer Journal for Clinicians. 2016. Vol.66. No.1. P.7. https://doi.org/10.3322/caac.21332.

8.     Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2017. CA Cancer Journal for Clinicians. 2017. Vol.67. No.1. P.7. https://doi.org/10.3322/caac.21387.

9.     Kaprin A.D., Starinskog V.V., Shakhzadova A.O. editor. Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2019 godu [State of cancer care in Russia in 2019]. Moscow. National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation. 2020. 239 p. (In Russian).

10. Eggermont A., Spatz A., Robert C. Cutaneous melanoma. The Lancet. 2014. Vol.1. No.383(9919). P.816. https://doi.org/10.1016/S0140-6736(13)60802-8.

11. Rubegni P., Burroni M., Perotti R., Fimiani M., Andreassi L., Cevenini G., Barbini P. Digital dermoscopy analysis and artificial neural network for the differentiation of clinically atypical pigmented skin lesions: a retrospective study. Journal of Investigative Dermatology. 2002. Vol.119. P.471.

12. Bafounta M.L., Beauchet A., Aegerter P., Saiag P. Is dermoscopy useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch. Dermatol. 2001. Vol.137. No.10. P.1343.

13. Cohen D.E., Sangueza O.P., Pass E., Stiller M.J. In vivo cutaneous surface microscopy: revised nomenclature. International Journal of Dermatology. 1993. Vol.32. No.4. P.257. https://doi.org/10.1111/j.1365-4362.1993.tb04263.x.

14. Bleve M., Capra P., Pavanetto F., Perugini P. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment. Dermatology Research and Practice. 2012. P.673706. https://doi.org/10.1155/2012/673706.

15. Demidov L.V., Sokolov D.V, Bulycheva I.V. The progress in the diagnosis of cutaneous melanoma. Journal of N.N. Blokhin Russian Cancer Research Center of RAMS. 2007. Vol.18. No.1. P.36.

16. Kittler H., Marghoob A.A., Argenziano G. et al. Standardization of terminology in dermoscopy/dermatoscopy: Results of the third consensus conference of the International Society of Dermoscopy. Journal of the American Academy of Dermatology. 2016. Vol.74. No.6. P.1093.

https://doi.org/10.1016/j.jaad.2015.12.038.

17. Rosendahl C., Hishon M., Cameron A., Barksdale S., Weedon D., Kittler H. Nodular melanoma: five consecutive cases in a general practice with polarized and non-polarized dermatoscopy and dermatopathology. Dermatology Practical and Conceptual. 2014. Vol.4. No.2. P.69https://doi.org/10.5826/dpc.0402a15.

18. Deinlein T., Richtig G., Schwab C., Scarfi F., Arzberger E., Wolf I., Hofmann-Wellenhof R., Zalaudek I. The use of dermatoscopy in diagnosis and therapy of nonmelanocytic skin cancer. Journal of the German Society of Dermatology. 2016. Vol.14. No.2. P.144. https://doi.org/10.1111/ddg.12903.

19. Rajadhyaksha M., González S., Zavislan J.M., Anderson R.R., Webb R.H. In Vivo Confocal Scanning Laser Microscopy of Human Skin II: Advances in Instrumentation and Comparison With Histology. Journal of Investigative Dermatology. 1999. Vol.113. P.293. https://doi.org/10.1046/j.1523-1747.1999.00690.x.

20. González S. Clinical Applications of Reflectance Confocal Microscopy in the Management of Cutaneous Tumors. Actas Dermosifiliogr. 2008. Vol.99. P.528. https://doi.org/10.1016/S1578-2190(08)70309-3.

21. Longo C., Ragazzi M., Ragazzi M., Nehal K., Bennassar A., Pellacani G., Guilera J.M. In Vivo and Ex Vivo Confocal Microscopy for Dermatologic and Mohs Surgeons. Dermatologic Clinics. 2016. Vol.34. No.4. P.497.

https://doi.org/10.1016/j.det.2016.05.012.

22. Pellacani G., De Pace B., Reggiani C., Cesinaro A.M., Argenziano G., Zalaudek I., Soyer H. P., Longo C. Distinct melanoma types based on reflectance confocal microscopy. Experimental Dermatology. 2014. Vol. 23. No.6. P.414. https://doi.org/10.1111/exd.12417.

23. Zhao B., He Y. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Review of Anticancer Therapy. 2010. No.10. P.1797. https://doi.org/10.1586/era.10.154.

24. Rohrbach D.J., Muffoletto D., Huihui J., Saager R. Keymel K., Paquette A., Morgan J., Zeitouni N., Sunar U. Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging. Academic Radiology. 2014. Vol.21. No.2. P.263. https://doi.org/10.1016/j.acra.2013.11.013.

25. Neuschmelting V., Burton N.C., Lockau H., Urich A., Harmsen S., Ntziachristos V., Kirchera M.F. Performance of a Multispectral Optoacoustic Tomography (MSOT) System equipped with 2D vs. 3D Handheld Probes for Potential Clinical Translation.  Photoacoustics. 2016. Vol.4. No.1. P.1. https://doi.org/10.1016/j.pacs.2015.12.001.

26. Müller J., Hartmann J., Bert C. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators. Physics in Medicine & Biology. 2016. Vol.61. No.7. P.2646. https://doi.org/10.1088/0031-9155/61/7/2646.

27. Petersen B., Philipsena P.A., Wulf H.C. Skin temperature during sunbathing – relevance for skin cancer. Photochemical & Photobiological Sciences. 2014. Vol.13. No.8. P.1123. https://doi.org/10.1039/C4PP00066H.

28. Faust O., Acharya U.R., Ng E.Y.K., Hong T.J., Yu W. Application of infrared thermography in computer aided diagnosis. Infrared Physics & Technology. 2014. Vol.66. P.160. https://doi.org/10.1016/j.infrared.2014.06.001.

29. Bleve M., Capra P. F., Perugini P. In vivo MR microscopy of the human skin.  Magnetic Resonance in Medicine. 1997. Vol.37. No.2. P.185.

30. Rollins A.M., Kulkarni M.D., Yazdanfar S., Ung-arunyawee R., Izatt J.A. In vivo video rate optical coherence tomography. Optics Express. 1998. Vol.3. No.6. P.219. https://doi.org/10.1364/OE.3.000219.

31. Saxer C.E., de Boer J.F., Park H.B., Zhao Y., Chen Z., Nelson J.S. High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin. Optics Letters. 2000. Vol.25. No.18.  P.1355.

https://doi.org/10.1364/OL.25.001355.

32. Olsen J., Themstrup L., Jemec G.B. Optical coherence tomography in dermatology. Giornale italiano di dermatologia e venereologia. 2015. Vol.150. No.5. P.603.

33. MacKinnon N., Vasefi F., Booth N., Farkas D.L. Melanoma detection using smartphone and multimode hyperspectral imaging // Proc. of SPIE. 2016. Vol.9711. No.1. P.971111. https://doi.org/10.1117/12.2222415.

34. Dolganova I.N., Neganova A.S., Kudrin K.G., Zaytsev K.I., Reshetov I.V.. Monte Carlo simulation of optical coherence tomography signal of the skin nevus// Journal of Physics: Conference Series. 2016. No.673. https://doi.org/10.1088/1742-6596/673/1/012014.

35. Zaytsev K.I., Kudrin K.G., Chernomyrdin N.V., Khorokhorov A.M., Prytov A.B., Dolganova I.N., Perchik A.V., Reshetov I.V., Yurchenko S.O.. Wavelet-domain de-noising of optical coherent tomography data for biomedical applications // Journal of Physics: Conference Series. 2015. No.584. P.012013. https://doi.org/10.1088/1742-6596/584/1/012013.

36. North J.P., Garrido M.C., Kolaitis N.A., LeBoit P.E. Fluorescence in situ hybridization as an ancillary tool in the diagnosis of ambiguous melanocytic neoplasms: a review of 804 cases. American Journal of Surgical Pathology. 2014. Vol.38. No.6. P.824. https://doi.org/10.1097/PAS.0000000000000189.

37. Borisova E.G., Angelova L.P., Pavlova E.P. Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical Applications // IEEE Journal of Selected Topics in Quantum Electronics. 2014. Vol.20. No.2. P.211. https://doi.org/10.1109/JSTQE.2013.2280503.

38. Chernomyrdin N.V., Zaytsev K.I., Lesnichaya A.D., Kudrin K.G., Cherkasova O.P., Kurlov V.N., Shikunova I.A., Perchik A.V., Yurchenko S.O., Reshetov I.V. Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin // Proceedings of SPIE - The International Society for Optical Engineering 21.Series "Imaging Spectrometry XXI". 2016. P.99760B. https://doi.org/10.1117/12.2237607.

39. Chernomyrdin N.V., Lesnichaya A.D., Yakovlev E.V., Kudrin K.G., Cherkasova O.P., Rimskaya E.N., Kurlov V.N., Karasik V.E., Reshetov I.V., Tuchin V.V., Zaytsev K.I. Differentiation of basal cell carcinoma and healthy skin using multispectral modulation autofluorescence imaging: a pilot study. Journal of Biomedical Photonics & Engineering. 2019. Vol.5. No.1(1). P.10302. https://doi.org/10.18287/JBPE19.05.010302.

40. Zaytsev K.I., Kudrin K.G., Karasik V.E., Reshetov I.V., Yurchenko S.O. In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia // Appl. Phys. Lett. 2015. Vol.106. No.5. P.053702. https://doi.org/10.1063/1.4907350.

41. Zaitsev K.I., Chernomyrdin N.V., Kudrin K.G., Reshetov I.V., Yurchenko S.O. Terahertz spectroscopy of pigmentary skin nevi in vivo. Optics and Spectroscopy. 2015. Vol.119. P.404–410. https://doi.org/10.7868/S0030403415090305.

42. Zaytsev K.I., Chernomyrdin N.V., Kudrin K.G., Gavdush A.A., Nosov P.A., Yurchenko S.O., Reshetov I.V. In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi // Journal of Physics: Conference Series. 2016. Vol.735. No.1. P.012076. https://doi.org/10.1088/1742-6596/735/1/012076.

43. Zaytsev K.I., Kudrin K.G., Reshetov I.V., Gavdush A.A., Chernomyrdin N.V., Karasik V.E., Yurchenko S.O. In vivo spectroscopy of healthy skin and pathology in terahertz frequency range // Journal of Physics: Conference Serie. 2015. Vol.584. P.012023. https://doi.org/10.1088/1742-6596/584/1/012023.

44. Reshetov I.V., Potekaev N.N., Arutyunyan L.S., Zaletaev D.V., Matorin O.V, Kudrin K.G. Dysplastic nevus as a precursor to skin melanoma. Rossiiskii onkologicheskii zhurnal: nauchno-prakticheskii zhurnalRussian cancer journal: a scientific and practical journal. 2009. No.5. P.54-56. (In Russian)

45. Konopatskova O.M., Zhandarova L.F. Melanoma of the skin in Saratov Proceedings of the conference «Klinika i lechenie melanom kozhi» [Clinic and treatment of skin melanomas]. Leningrad. 1990. P.33-34. (In Russian).

46. Akhmedov B.P. Khasanova Z.M. Skin cancer screening. Sovremennaya onkologiya – Modern oncology. 2002. Vol.4. No.4. P.50. (In Russian)

47. Sokolov D.V., Vorozhtsov G.N., Makhson A.N. et al. Comprehensive method for early diagnosis of skin melanoma. Rossiiskii onkologicheskii zhurnal – Russian cancer journal. 2008. No.4. P.6-10. (In Russian)

48. Kudrin K.G., Rimskaya E.N., Apollonova I.A., Nikolaev A.P., Chernomyrdin N.V., Svyatoslavov D.S., Davydov D.V., Reshetov I.V. Early Diagnosis of Skin Melanoma Using Several Imaging Systems. Optics and Spectroscopy. 2020. Vol.128. No.6. P.820–831. https://doi.org/10.1134/S0030400X20060132.

49. Fitzpatrick T.B., Johnson R.A., Wolff K., Polano M.K., Suurmond D. Color Atlas and Synopsis of Clinical Dermatology. 3 ed. McGraw-Hill, Health Professions Division, 1997. 1029 p.

50.  Chissov V.I., Starinskii V.V., Aleksandrova L.M. et al. Rannee vyyavlenie i profilaktika melanomy kozhi [Early detection and prevention of skin melanoma]. Moscow, FSBI "P.A.Herzen MNIOI" of the Ministry of Health of the Russian Federation. 2013. 22 p. (In Russian)

51. Soifer V.A., editor. Metody komp'yuternoi obrabotki izobrazhenii [Computer image processing methods]. Moscow, Fizmatlit Publ. 2001. 784 p. (In Russian)

52. Kudrin K.G., Reshetov I.V., Matorin O.V. Automatic shape recognition for early diagnosis of skin melanoma Proceedings of the conference «V Troitskaya konferentsiya «Meditsinskaya fizika i innovatsii v meditsine» (TKMF-5)» [Fifth Troitsk conference «Medical physics and innovations in medicine»]. Troitsk, 2012. Vol.2. P. 437-439. (In Russian)

53. Agapov S.V. Fotogrammetriya skanernykh snimkov [Photogrammetry of scanner images]. Moscow, Kartgeotsentr-Geodezizdat Publ. 1996. 76 p. (In Russian)

54. Bugaev A.S., Ivashov S.I. Immoreev I.Ya. editor. Bioradiolokatsiya [Bioradiolocation]. Moscow, BMSTU Publ. 2010. 396 p. (In Russian)

 

For citation:

Kudrin K.G., Rimskaya E.N., Pavlyukova O.Yu., Davydov D.V., Reshetov I.V. Measuring errors of parameters of size, shape and color during automated screening of skin pigmented neoplasms. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.12. https://doi.org/10.30898/1684-1719.2020.12.7  (In Russian)