Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.12.3

 

A pulsed Fourier spectroscopy for analytical applications

 

V.L. Vaks 1,2

 

1IPM RAS, 603950, Russia, Nizhny Novgorod, GSP-105

2Lobachevsky University 603022, Russia, Nizhny Novgorod, Gagarina av., 23

 

The paper was received December 8, 2022

 

Abstract. The review of pulsed Fourier spectroscopy methods including the pioneer works (Ekkers and Flygare etc.), and new trends in development of this approach with the nonstationary gas spectroscopy methods in particularly are presented in this work. In particular, such radiation sources as quantum-cascade lasers (QCLs) in the terahertz (THz) frequency range, which make it possible to implement the method of pulsed Fourier spectroscopy, are considered. The presented approach is promising for the development of non-invasive methods of medical diagnostics based on the metabolic analysis of exhaled air, the composition of biological fluids, including vapors and thermal decomposition products of biological fluids. Some examples of the application of non-stationary spectroscopic methods for the analysis of the composition of multicomponent gas mixtures of biological origin are presented.

Keywords: pulsed Fourier spectroscopy, phase switching of the probing radiation, fast frequency sweep, metabolites.

Financing: The works concerning the ENT organs investigations were performed under the support from Russian Scientific Foundation (project 21-19-00357, https://rscf.ru/en/project/21-19-00357/. The works concerning the urina investigations were performed under the Government Statement of work for IPM RAS (0030-2021-0024).

Corresponding author: Vaks Vladimir Leibovich, vax@ipmras.ru

References

1. Ekkers J., Flygare W.H. Pulsed microwave Fourier transform spectrometer. Review of Scientific Instruments. 1976. V.47. P.448. https://doi.org/10.1063/1.1134647

2. Grabow J.U. Fourier Transform Microwave Spectroscopy Measurement and Instrumentation. Handbook of High resolution Spectroscopy. John Wiley & Sons, Ltd. 2011.https://doi.org/10.1002/9780470749593.hrs037

3. Steber A.L., Harris B.J., Neill J.L., Pate B.H. An arbitrary waveform generator based chirped pulse Fourier transform spectrometer operating from 260 to 295 GHz. Journal of Molecular Spectroscopy. 2012. V.280. P.3-10. https://doi.org/10.1016/j.jms.2012.07.015

4. Röben B., Lü X., Biermann K. et al. Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines. Journal of Applied Physics. 2019. V.125. P.151613. https://doi.org/10.1063/1.5079701

5. Williams B. Terahertz quantum-cascade lasers. Nature Photonics. 2007. V.1. P.517-525. https://doi.org/10.1038/nphoton.2007.166

6. Khalatpour A., Paulsen A. K., Deimert C., Wasilewski Z.R., and Hu Q. High-power portable terahertz laser systems. Nature Photonics. 2021. V.15. №1. P.16-20. https://doi.org/10.1038/s41566-020-00707-5

7.  Williams B.S., et al. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Optics Express. 2005. V.13. P.3331-3339. https://doi.org/10.1364/OPEX.13.003331

8. Wienold M., Röben B., Lü X., et al. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz. Applied Physics Letters. 2015. V.107. P.202101. https://doi.org/10.1063/1.4935942

9. Mata S., Pena I., Cabezas C., Lopez J.C., Alonso J.L. A broadband Fourier-transform microwave spectrometer with laser ablation source: The rotational spectrum of nicotinic acid. Journal of Molecular Spectroscopy. 2012. V.280. P.91-96. https://doi.org/10.1016/j.jms.2012.08.004

10. Taday P.F., Pepper M., Arnone D.D. Selected Applications of Terahertz Pulses in Medicine and Industry. Applied Sciences. 2022. V.12. P.6169. https://doi.org/10.3390/app12126169

11. Laser and Coherence Spectroscopy. Edited by J. Steinfeld. New York and London, Plenum Press. 1978. 530 p. https://doi.org/10.1007/978-1-4684-2352-5

12. Vaks V., Anfertev V., Balakirev V., Basov S., Domracheva E., Illyuk A., Kupriyanov P., Pripolzin S., Chernyaeva M. High resolution terahertz spectroscopy for analytical applications. Phys. Usp. 2020. V.63. P.708-720. https://doi.org/10.3367/UFNr.2019.07.038613

13. Vaks. V.L. Metody diagnostiki sred, osnovannye na vysokotochnykh SVCH izmereniyakh. [Methods of media diagnostics based on high accuracy microwave measurements] PhD degree thesis. IPM RAS. N.Novgorod. 2003. 155 P. (in Russian).

14. Vaks V.L., Anfertev V.A., Chernyaeva M.B., Domracheva E.G., Pripolzin S.I., Baranov A.N., Teissier R., Ayzenshtadt A.A., Gavrilova K.A. On possibility of advance of non-stationary gas spectroscopy method realized with using fast frequency sweeping mode upward through the terahertz range. Radiophysics and Quantum Electronics. (in press).

15. Kumar S., Hu Q., Reno J.L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Applied Physics Letters. 2009. V.94. №13. P.131105. https://doi.org/10.1063/1.3114418

16. Pickett H.M., et al. Submillimeter, millimeter, and microwave spectral line catalog. Journal of Quantitative Spectroscopy and Radiative Transfer. 1998. V.60. №5. P.883-890. https://doi.org/10.1016/S0022-4073(98)00091-0

17. Endres C.P., Schlemmer S., Schilke P., Stutzki J., Müller H.S.P. Journal of Molecular Spectroscopy. 2016. V.327. P.95-104. Date of access 10.10.2022. https://cdms.astro.uni-koeln.de/cgi-bin/cdmssearch

18. Vaks V.L., Domracheva E.G., Chernyaeva M.B., Anfert’ev V.A., Aizenshtadt A.A., Gavrilova K.A. and Larin R.A. Application of high-resolution terahertz gas spectroscopy to compositional analysis of products of thermal decomposition of paranasal sinus cyst tissue. Journal of Optical Technology. 2021. V.88. №3. P.166-168. https://doi.org/10.1364/JOT.88.000166

19. Vaks V., Aizenshtadt A., Anfertev V., Chernyaeva M., Domracheva E., Gavrilova K., Larin R., Pripolzin S., Shakhova M. Analysis of the Thermal Decomposition Products of Pathological and Healthy Tissues in Paranasal Sinuses: A High-Resolution Terahertz Gas Spectroscopy Study. Applied Sciences. 2021. V.11. P.7562. https://doi.org/10.3390/app11167562

20. Vaks V. et al. Application of THz Fast Frequency Sweep Spectrometer for Investigation of Chemical Composition of Blood. Journal of Infrared, Millimeter. and Terahertz Waves 2020. V.41. P.1114-1120. https://doi.org/10.1007/s10762-019-00656-3

21. Lykina A.A., Anfertev V.A., Domracheva E.G., et al. Terahertz high-resolution spectroscopy of thermal decomposition gas products of diabetic and non-diabetic blood plasma and kidney tissue pellets. Journal of Biomedical Optics. 2021. V.26. 4. P.043008. https://doi.org/10.1117/1.JBO.26.4.043008

22. Vaks V., Anfertev V., Chernyaeva M., Domracheva E., Yablokov A., Maslennikova A., Zhelesnyak A., Baranov A., Schevchenko Yu., Pereira M.F. Sensing nitriles with THz spectroscopy of urine vapours from cancers patients subject to chemotherapy. Scientific Reports. 2022. V.12. №1. P.1-11. https://doi.org/10.1038/s41598-022-22783-z

23. Vaks V.L., Domracheva E.G., Chernyaeva M.B., Anfertev V.A., Maslennikova A.V., Zheleznyak A.V., Knyazeva T.D., Rodionov M.A., Maiorov A.I. Application of a high-resolution terahertz gas spectroscopy method to compositional analysis of thermal decomposition products of human fluids (urine) Journal of Optical Technology. 2022. V.89. №4. P.243-249. https://doi.org/10.1364/JOT.89.000243

For citation:

Vaks V.L. A pulsed Fourier spectroscopy for analytical applications. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №12 https://doi.org/10.30898/1684-1719.2022.12.3 (In Russian)