Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. 12

Full text in Russian (pdf)

Russian page


DOI: https://doi.org/10.30898/1684-1719.2022.12.9





Z.Ya. Kosakovskaya 1, S.V. von Gratowski 1, V.V. Koledov 1, V.G. Shavrov 1,

A.M. Smolovich 1, A.P. Orlov 1, Jun-Ge Liang 2,3


1 Kotelnikov IRE RAS, 125009, Russia, Moscow, Mokhovaya str., 11, b.7

2 Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, 214122, China, Wuxi

3 School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, China, Nanjing


The paper was received December 30, 2022.


Abstract. The conductivity of the emitter section of a nanodiode circuit with an emitter made of an individual closed carbon nanotube (CNT) and arrays of closed CNTs was studied. High values of cold field emission were observed, as well as nonlinearity and anomalies of the current-voltage characteristic (CVC), which manifested themselves in the form of peaks at low and high current values. Peaks in the CVC have distinct areas of negative differential conductivity. The anomalously high currents in the I–V characteristics of cold field emission of electrons from a nanoemitter made of closed CNTs can be associated with a sharp increase in the density of electron states at energies near the van Hove singularity.

Key words: carbon nanotubes (CNTs), carbon nanotubes (CNTs), cold field emission of electrons, Fowler-Nordheim law, current-voltage characteristic (CVC), pointed cathodes, negative differential conductivity, Van Hove singularity

Financing: This work was done in the framework of state task, partially supported by the Russian Foundation for Basic Research (RFBR), Grant № 20-07-01062\22.

Corresponding author: von Gratowski Svetlana Vjacheslavovna, svetlana.gratowski@yandex.ru   


1. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991. V.354(6348). P.56-58.

2. Chernozatonskii L.A. Barrelenes. Tubelenes – A new class of cage carbon molecules and its solids. Physics Letters A. 1992. V.166. №1. P.55-60.

3. Kosakovskaya, Z.Y., Chernozatonskii L.A., Fedorov E.A. Nanofiber carbon structure. Pisma v Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki [Letters to the Journal of Experimental and Theoretical Physics]. 1992. V.56. №1-2. P.26-30. (in Russian)

4. Bethune D.S., Kiang C.H., De Vries M.S., Gorman G., Savoy R., Vazquez J., Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993. V.363. №6430. P.605-607.

5. Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993. V.363. №6430. P.603-605.

6. Chernozatonskii L.A., Gulyaev Y.V., Kosakovskaja Z.J., Sinitsyn N.I., Torgashov G.V., Zakharchenko Y.F., Val'chuk V.P. Electron field emission from nanofilament carbon films. Chemical Physics Letters. 1995. V.233. №1-2. P.63-68.

7. Eletskii A.V. Electron field emitters based on carbon nanotubes. Uspekhi Fizicheskikh Nauk [Physics-Uspekhi (Advances in Physical Sciences)]. 2010. V.180. 9. P.897-930. (in Russian)

8. Eidelman E.D., Arkhipov A.V. Field emission from carbon nanostructures: models and experiment. Physics-Uspekhi. 2020. V.63. №7. P.648.

9. Tomilin O.B., Rodionova E.V., Rodin E.A. Mechanism of the Field Emission of Electrons in Single-Walled Carbon Nanotubes. Russian Journal of Physical Chemistry A. 2020. V.94. №8. P.1657-1662.

10. Tomilin O.B., Rodionova E.V., Rodin E.A. Investigation of the stability of the model of field emission of electrons from carbon nanotubes to changes in their geometric parameters. Zhurnal fizicheskoi khimii [Journal of Physical Chemistry]. 2021. V.95. №9. P.1396-1398. (in Russian)

11. Tomilin O.B., Rodionova E.V., Rodin E.A., Poklonski N.A., Anikeev I.I., Ratkevich S.V. Dependence of the energy of emission molecular orbitals in short open carbon nanotubes on the electric field. Physics of the Solid State. 2022. V.64. 3. P.347-352.

12. Yeletsky A.V. Transport properties of carbon nanotubes. Progresses in physical sciences. 2009. V.179. P.1775-1781. (in Russian)

13. Li H., Lu W.G., Li J.J., Bai X.D., Gu C.Z. Multichannel ballistic transport in multiwall carbon nanotubes. Physical review letters. 2005. V.95. №8. P.086601.

14. Huo C., Liang F., Sun A.B. Review on development of carbon nanotube field emission cathode for space propulsion systems. High Voltage. 2020. V.5. №4. P.409-415.

15. Sominsky G.G., Tumareva T.A. Promising field emitters from carbon nanotubes, graphene, and semiconductors: Recent developments. Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika [News of higher educational institutions. Applied Nonlinear Dynamics]. 2015. V.23. 2. P.74-93. (in Russian)

16. Milne W.I., Teo K.B.K., Amaratunga G.A.J., Legagneux P., Gangloff L., Schnell J.P., Groening O. Carbon nanotubes as field emission sources. Journal of Materials Chemistry. 2004. V.14. №6. P.933-943.

17. Zou R., Hu J., Song Y., Wang N., Chen H., Chen H., Chen Z. Carbon nanotubes as field emitter. Journal of Nanoscience and nanotechnology. 2010. V.10. №12. P.7876-7896.

18. Soldatov E.S., Kolesov V.V. Single electronics: past, present, future. Radioehlektronika. Nanosistemy. Informatsionnye tekhnologii [Radioelectronics. Nanosystems. Information Technology]. 2012. V.4. 2. P.71-90. (in Russian)

19. Shingaya Y., Nakayama T., Aono M. Carbon nanotube tip for scanning tunneling microscopy. Physica B: Condensed Matter. 2002. V.323. №1-4. P.153-155.

20. Wilson N.R., Macpherson J.V. Carbon nanotube tips for atomic force microscopy. Nature nanotechnology. 2009. V.4. №8. P.483-491.

21. Kim S.J. Vacuum gauges with emitters based on carbon nanotubes. Technical physics letters. 2005. V.31. №7. P.597-599.

22. Fowler R.H., Nordheim L. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1928. V.119. №781. P.173-181.

23. Forbes R.G. Field emission: New theory for the derivation of emission area from a Fowler-Nordheim plot. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1999. V.17. №2. P.526-533.

24. Liang S.D., Chen L. Generalized Fowler-Nordheim theory of field emission of carbon nanotubes. Physical Review Letters. 2008. V.101. №2. P.027602.

25. Jensen K.L. Electron emission theory and its application: Fowler-Nordheim equation and beyond. Journal of vacuum science & technology B: microelectronics and nanometer structures processing, measurement, and phenomena. 2003. V.21. №4. P.1528-1544.

26. Lepetit B. Electronic field emission models beyond the Fowler-Nordheim one. Journal of Applied Physics. 2017. V.122. №21. P.215105.

27. Vul A., et al. A model of field emission from carbon nanotubes decorated by nanodiamonds. Advanced Science Letters. 2010. V.3. №2. P.110-116.

28. Katkov V.L., Osipov V.A. Energy distributions of field emitted electrons from carbon nanosheets: Manifestation of the quantum size effect. JETP letters. 2009. V.90. №4. P.278-283.

29. Kosakovskii G.G., Latyshev Yu.I., Blagov E.V., Kosakovskaya Z.Ya., Orlov A.P., Smolovich A.M. Low-voltage field emission from carbon nanotube cathodes. Nelineinyi mir [Nonlinear World]. 2013. V.11. 2. P.087-089. (in Russian)

30. Dalidchik F.I., Balashov E.M., Grishin M.V., Kovalevskii S.A., Kolchenko N.N. Scanning tunneling spectroscopy of interacting low-dimensional carbon nanostructures. Rossiiskii khimicheskii Zhurnal [Russian Chemical Journal]. 2005. V.159. №3. P.98-104. (in Russian)

31. Nasibulin A.G., Pikhitsa P.V., Jiang. H., Brown D.P., Krasheninnikov A.V., Anisimov A.S., Kauppinen E.I. A novel hybrid carbon material. Nature Nanotechnology. 2007. V.2. №3. P.156-161.

For citation:

Kosakovskaya Z.Ya., von Gratowski S.V., Koledov V.V., Shavrov V.G., Smolovich A.M., Orlov A.P., Jun-Ge Liang. Peculiarities of charge transfer under cold field emission from carbon nanotubes cathodes. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №12. https://doi.org/10.30898/1684-1719.2022.12.9 (in Russian)