ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. eISSN 1684-1719. 2023. №12
Оглавление выпускаТекст статьи (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.12.20
УДК: 621.396, 621.391
интервально-импульсная МОДУЛЯЦИЯ
СВЕРХШИРОКОПОЛОСНых хаотических радиоимпульсов:
теория и эксперимент
Л.В. Кузьмин, Е.В. Ефремова, М.М. Петросян, В.В. Ицков
ИРЭ им. В.А. Котельникова РАН
125009, Москва, ул. Моховая, 11, корп.7
Статья поступила в редакцию 30 ноября 2023 г.
Аннотация. Предложен подход, который позволяет снизить негативное влияние многолучевого распространения сигнала в беспроводном канале связи, проявляющееся в виде межимпульсной интерференции, за счет использования интервально-импульсной модуляции сверхширокополосных хаотических радиоимпульсов. Интервально-импульсная модуляция дает возможность увеличить временной интервал между импульсами без ущерба для средней скорости передачи данных. Показана целесообразность применения данного метода в сверхширокополосных каналах сверхвысокочастотного диапазона с многолучевым распространением. Исследована помехоустойчивость метода в канале с белым шумом. Описана экспериментальная реализация метода.
Ключевые слова: сверхширокополосные сигналы, позиционная модуляция, интервально-импульсная модуляция, хаотические радиоимпульсы, обнаружение хаотических сигналов.
Финансирование: Государственное задание ИРЭ им. В.А.Котельникова РАН, код научной темы FFWZ-2022-0006.
Автор для переписки: Кузьмин Лев Викторович, lvkuzmin@gmail.com
Литература
1. Yang L., Giannakis G. B. Ultra-wideband communications: an idea whose time has come //IEEE signal processing magazine. – 2004. – Т. 21. – №. 6. – С. 26-54.
2. Niemelä V. et al. An ultra wideband survey: Global regulations and impulse radio research based on standards //IEEE Communications Surveys & Tutorials. – 2016. – Т. 19. – №. 2. – С. 874-890.
3. Breed G. A summary of FCC rules for ultra wideband communications //High Frequency Electronics. – 2005. – Т. 4. – №. 1. – С. 42-44.
4. Mandke K. et al. The evolution of ultra wide band radio for wireless personal area networks //Spectrum. – 2003. – Т. 3. – С. 10.6.
5. Task Group 3a. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). 2002. URL: http://www.ieee802.org/15/pub/TG3a.html (дата обр. 28.11.2023).
6. “IEEE Standard for Low-Rate Wireless Networks”. В: IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011). – 2016. – C. 1-709.
7. IEEE Std 802.15.6-2012; IEEE Standard for Local and metropolitan area networks–Part 15.6: Wire-less Body Area Networks. New York City, NY, USA: IEEE Press. – 2012. – С. 1-271.
8. IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020). IEEE Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. New York City, NY, USA: IEEE Press. 2020. – C. 1-174.
9. Stocker M. et al. On the performance of ieee 802.15. 4z-compliant ultra-wideband devices //2022 Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench). – IEEE, 2022. – С. 28-33.
10. Chen H. et al. A 4-to-9GHz IEEE 802.15. 4z-Compliant UWB Digital Transmitter with Reconfigurable Pulse-Shaping in 28nm CMOS //2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). – IEEE, 2022. – С. 99-102.
11. Ge L., Yue G., Affes S. On the BER performance of pulse-position-modulation UWB radio in multipath channels //2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580). – IEEE, 2002. – С. 231-234.
12. August N. J., Thirugnanam R., Ha D. S. An adaptive UWB modulation scheme for optimization of energy, BER, and data rate //2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No. 04EX812). – IEEE, 2004. – С. 182-186.
13. Li X. et al. The Interval Modulation System For The Ultra-Wideband Vehicular Radar //2006 6th International Conference on ITS Telecommunications. – IEEE, 2006. – С. 282-285.
14. Herceg M., Švedek T., Matić T. Pulse interval modulation for ultra-high speed IR-UWB communications systems //EURASIP Journal on Advances in Signal Processing. – 2010. – Т. 2010. – С. 1-8.
15. Niranjayan S., Nallanathan A., Kannan B. Delay tuning based transmit diversity scheme for TH-PPM UWB: Performance with RAKE reception and comparison with multi RX schemes //2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No. 04EX812). – IEEE, 2004. – С. 341-345.
16. Kim S. et al. A selective signal combining scheme for noncoherent UWB systems //2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications. – IEEE, 2008. – С. 313-317.
17. Jin L., Dong X. Integration interval determination in transmitted reference pulse cluster systems for UWB communications //2008 IEEE 68th Vehicular Technology Conference. – IEEE, 2008. – С. 1-5.
18. Jin B. et al. Digital pulse interval modulation for ultra-wideband transmission with energy detection //2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). – IEEE, 2010. – С. 1-4.
19. Jin B. et al. Pulse interval modulation for UWB communications with energy detection //2011 IEEE 3rd International Conference on Communication Software and Networks. – IEEE, 2011. – С. 66-70.
20. Niemela V., Hämäläinen M., Iinatti J. On IEEE 802.15. 6 UWB symbol length for energy detector receivers' performance with OOK and PPM //2013 7th International Symposium on Medical Information and Communication Technology (ISMICT). – IEEE, 2013. – С. 33-37.
21. Tanaka K., Ikegami T. Non-coherent Detection Study for UWB Transmission and Body Area Network in Interference Environments //2020 14th International Symposium on Medical Information Communication Technology (ISMICT). – IEEE, 2020. – С. 1-5.
22. Awano J., Tomiki A., Nishikawa H. IR-UWB Study for Intra-Satellite Wireless Communication //2019 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). – IEEE, 2019. – С. 81-86.
23. Kim Y. S., Jang W. M., Nguyen L. Self-encoded TH-PPM UWB system with iterative detection //IEICE transactions on communications. – 2007. – Т. 90. – №. 1. – С. 63-68.
24. Zhu Q., Zou C., Jia Z. Performance Analysis of Ultra Wideband Communication System with Time-Hopping M-ary Biorthogonal Pulse Position Modulation //2006 First International Conference on Communications and Networking in China. – IEEE, 2006. – С. 1-6.
25. Wu W., Wu Z. Y., Xie W. J. UWB PPM-TH and PAM-DS system with time reversal and its improved solution //2012 IEEE 6th International Conference on Information and Automation for Sustainability. – IEEE, 2012. – С. 332-336.
26. Jayaprakash C. A. A New scheme for Ultra Wideband PPM communication //2019 International Conference on Range Technology (ICORT). – IEEE, 2019. – С. 1-5.
27. Sharma S., Sharma A., Bhatia V. Performance of pulse position modulation using various UWB pulses //2015 IEEE International Advance Computing Conference (IACC). – IEEE, 2015. – С. 650-654.
28. Assanovich B., Lee M. H. Modification of pulse position modulation for high data UWB systems and multi-user communication //15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No. 04EX824). – IEEE, 2004. – Т. 3. – С. 1024-1027.
29. Niranjayan S., Nallanathan A., Kannan B. An adaptive transmit diversity scheme based on spatial signal combining for TH-PPM UWB //Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications-Programme and Book of Abstracts (IEEE Cat. No. 04TH8738). – IEEE, 2004. – С. 150-154.
30. Abou-Rjeily C. Unitary space-time pulse position modulation for differential unipolar MIMO IR-UWB communications //IEEE Transactions on Wireless Communications. – 2015. – Т. 14. – №. 10. – С. 5602-5615.
31. Pulkkinen M. et al. 45.2% Energy efficiency improvement of UWB IR Tx by use of differential PPM in 180nm CMOS //2016 IEEE International Symposium on Circuits and Systems (ISCAS). – IEEE, 2016. – С. 193-196.
32. HAMIL H. et al. Design and FPGA real-time implementation of PWM and PPM modulation for Ultra Wide Band applications //2019 6th International Conference on Image and Signal Processing and their Applications (ISPA). – IEEE, 2019. – С. 1-5.
33. Kaluarachi E. D., Ghassemlooy Z., Wilson B. Digital pulse interval modulation for optical free space communication links //IEE Colloquium on Optical Free Space Communication Links. – IET, 1996. – С. 3/1-3/5.
34. Ghassemlooy Z. et al. Digital pulse interval modulation for optical communications //IEEE Communications Magazine. – 1998. – Т. 36. – №. 12. – С. 95-99.
35. Ghassemlooy Z., Hayes A. R. Digital pulse interval modulation for IR communication systems–a review //International Journal of Communication Systems. – 2000. – Т. 13. – №. 7‐8. – С. 519-536.
36. Ghassemlooy Z., Aldibbiat N. M. Multilevel digital pulse interval modulation scheme for optical wireless communications //2006 International Conference on Transparent Optical Networks. – IEEE, 2006. – Т. 3. – С. 149-153.
37. Rouissat M., Borsai A. R., Chikh-Bled M. Isochronous and anisochronous modulation schemes in wireless optical communication systems //Int. J. Inf. Eng. Electron. Bus. – 2012. – Т. 4. – №. 3. – С. 19-25.
38. Sushchik M. et al. Chaotic pulse position modulation: A robust method of communicating with chaos //IEEE Communications Letters. – 2000. – Т. 4. – №. 4. – С. 128-130.
39. Rulkov N. F. et al. Digital communication using chaotic-pulse-position modulation //IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. – 2001. – Т. 48. – №. 12. – С. 1436-1444.
40. Onunkwo U., Li Y. On the optimum pulse-position modulation index for ultra-wideband communication //Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No. 04EX710). – IEEE, 2004. – Т. 1. – С. 77-80.
41. Yang H., Jiang G. Delay-variable synchronized chaotic pulse position modulation for ultra-wide bandwidth communication //2006 International Conference on Communications, Circuits and Systems. – IEEE, 2006. – Т. 4. – С. 2692-2694.
42. Hong Y. P., Jin S. Y., Song H. Y. Coded N-ary PPM UWB impulse radio with chaotic time hopping and polarity randomization //2007 3rd International Workshop on Signal Design and Its Applications in Communications. – IEEE, 2007. – С. 252-256.
43. Munirathinam R. et al. Chaotic Non-Coherent Pulse Position Modulation Based Ultra-Wideband Communication System //2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). – IEEE, 2021. – С. 1-6.
44. Quyen N. X., Van Yem V., Hoang T. M. Chaotic modulation based on the combination of CPPM and CPWM //Proceedings of the Joint INDS'11 & ISTET'11. – IEEE, 2011. – С. 1-6.
45. Quyen N. X. et al. Digital communication using MxN-ary chaotic pulse width-position modulation //The 2012 International Conference on Advanced Technologies for Communications. – IEEE, 2012. – С. 362-366.
46. Mesloub A. et al. Chip averaging chaotic ON–OFF keying: A new non-coherent modulation for ultra wide band direct chaotic communication //IEEE Communications Letters. – 2017. – Т. 21. – №. 10. – С. 2166-2169.
47. Maali A. et al. An enhanced pulse position modulation (ppm) for both ir-uwb and dcc-uwb communication //2019 13th European Conference on Antennas and Propagation (EuCAP). – IEEE, 2019. – С. 1-5.
48. Yao Z. J. et al. Non-crosstalk real-time ultrasonic range system with optimized chaotic pulse position-width modulation excitation //2008 IEEE Ultrasonics Symposium. – IEEE, 2008. – С. 729-732.
49. Zhang L. et al. A new pulse modulation method for underwater acoustic communication combined with multiple pulse characteristics //2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). – IEEE, 2018. – С. 1-6.
50. Dmitriev A. S., Zakharchenko K. V., Puzikov D. Y. Introduction to the theory of direct chaotic data transmission //Journal of communications technology & electronics. – 2003. – Т. 48. – №. 3. – С. 293-302.
51. Dmitriev A. S. et al. Active wireless ultrawideband networks based on chaotic radio pulses //Journal of Communications Technology and Electronics. – 2017. – Т. 62. – С. 380-388.
52. Dmitriev A. S. et al. Self-organizing ultrawideband wireless sensor network //2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO). – IEEE, 2017. – С. 1-6.
53. Andreyev Y. V. et al. Qualitative theory of dynamical systems, chaos and contemporary wireless communications //International journal of bifurcation and chaos. – 2005. – Т. 15. – №. 11. – С. 3639-3651.
54. Molisch A. F. Ultra-wide-band propagation channels //Proceedings of the IEEE. – 2009. – Т. 97. – №. 2. – С. 353-371.
55. Proakis J. G. Digital communications. – McGraw-Hill, Higher Education, 2008.
56. Dmitriev A. S., Efremova E. V., Rumyantsev N. V. A microwave chaos generator with a flat envelope of the power spectrum in the range of 3–8 GHz //Technical Physics Letters. – 2014. – Т. 40. – С. 48-51.
57. Kwon D. H., Kim Y., Chubinsky N. P. A printed dipole UWB antenna with GPS frequency notch function //2005 IEEE Antennas and Propagation Society International Symposium. – IEEE, 2005. – Т. 3. – С. 520-523.
Для цитирования:
Кузьмин Л.В., Ефремова Е.В., Петросян М.М., Ицков В.В. Интервально-импульсная модуляция сверхширокополосных хаотических радиоимпульсов: теория и эксперимент. // Журнал радиоэлектроники. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.20